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Abstract

We study the dynamics of consumption growth in a series of countries over a

time span of 200 years. We seek to answer whether long-run risk or disasters are

features of models that yield good fit to consumption data. To accomplish this goal,

we develop a new methodology for the filtering and estimation of multivariate jump-

diffusion processes in the presence of incomplete data and measurement errors. Our

methodology is both statistically and computationally efficient, and enables the

empirical analysis of previously intractable multidimensional models. Our estimates

suggest that small and frequent disasters that arrive at a time-varying rate are a

predominant feature of consumption data. Persistent stochastic volatility is also

found to be a significant driver of consumption growth, especially in the United

States.
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1 Introduction

Macro-finance models often postulate that consumption growth uncertainty is a significant

driver of asset prices. A number of theories have been developed to explain anomalies in

asset prices by adding novel features to standard models of consumption growth. For

example, Bansal and Yaron (2004) posit that there exists a persistent latent component

in consumption growth that drives variations in asset prices. Barro (2006) formulates a

model with unexpected severe disasters to consumption growth that investors fear, again

yielding variations in asset prices.

Many times, models of consumption growth are calibrated to match asset pricing

moments. Such calibrations may be problematic if the target moments are not care-

fully chosen, and if the model of consumption growth is misspecified. The estimation of

consumption growth models is challenging due to several layers of difficulty. First, con-

sumption may depend in a complex way on latent factors – such as the long-run risk

factors of Bansal and Yaron (2004) and the disaster factor of Barro (2006). The estima-

tion of consumption growth models needs to address the fact that latent factors have to

be filtered out based on the available data. Second, the joint distribution of consumption

growth and the latent factors needs to be estimated jointly in a multidimensional model

that allows for both small diffusive fluctuations and large disasters. The joint transition

law of such multivariate jump-diffusion models is often intractable. Third, consumption

data is observed only in discrete fashion, either on a monthly, quarterly, or annual basis.

Consequently, the model of consumption growth need to be estimated from the available

discrete data. Finally, consumption data may be contaminated with measurement errors.

The question of how to carry out exact and efficient estimation for such complex models

of consumption growth remains open.1

1The macro-finance literature recognizes this issue. For example, Cochrane (2017) states: “There is

some hope in formally testing models – do their moment conditions and cross-equation restrictions hold?

– and in checking models’ additional assumptions – do conditional moments vary as much and in the

way that long-run risk or rare disaster models specify?” Similarly, Ludvigson (2013) claims: “Although

an important first step, a complete assessment of leading consumption-based theories requires moving

beyond calibration, to formal econometric estimation, hypothesis testing, and model comparison. Formal

estimation, testing, and model comparison present some significant challenges, to which researchers have
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We answer this question by developing a novel methodology for the efficient estima-

tion and filtering of multivariate jump-diffusion models in the presence of latent factors

and measurement errors. Our econometric methodology makes it possible for us to esti-

mate models of consumption growth that nest long-run risk and disaster specifications

for a series of countries over a time span of 200 years. Our models feature latent per-

sistent and transitory long-run risk factors that drive the expected growth rate and the

conditional volatility of consumption as in the models of Bansal and Yaron (2004), Bansal

et al. (2012), and Schorfheide et al. (2018). In addition, consumption growth may expe-

rience unexpected negative jumps as in the disaster models of Barro (2006), Barro and

Jin (2011), and Barro and Ursúa (2017). The arrival rate of disaster may be time-variant,

driven by an additional latent mean-reverting factor as in Wachter (2013). We estimate

our models using annual data on real per capita consumer expenditures provided by Barro

and Ursúa (2017) for Australia, Germany, Japan, and the United States. We also estimate

several nested submodels. The simplest model posits consumption as a random walk, and

does not allow for long-run risks or disasters. Intermediate models allow for transitory,

persistent, or transitory and persistent long-run risk factors, but not for disasters. We

also estimate models that allow for time-invariant or time-varying disasters, but do not

account for long-run risks. All models are estimated both in the presence and the absence

of measurement errors. By comparing the fit of the nested models to those of the com-

plete model, we gain a complete picture of the relevance of the different features driving

consumption growth.

The models we estimate are non-affine, and feature several latent factors as well as

measurement errors. The estimation of such models using conventional methodologies is

challenging. We circumvent these issues by extending the recently developed estimators of

Guay and Schwenkler (2018) for multivariate jump-diffusion models. Guay and Schwenkler

(2018) consider the problem of estimating the parameters of a multivariate jump-diffusion

process based on discretely observed data in the presence of latent factors but without

measurement errors. We extend the methodology of Guay and Schwenkler (2018) to allow

for measurement errors, and show that the estimators we obtain for the model parameters

only recently turned.”
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and the measurement error variance are consistent, asymptotically normal, and asymptot-

ically efficient. These results allow us to estimate all of our models using one and the same

methodology, ensuring comparability across models. They also empower us with t-tests

to assess the significance of individual model parameters. We further extend Guay and

Schwenkler (2018) by developing likelihood ratio tests. Our likelihood ratio tests yield a

quantitative approach to measure the incremental goodness-of-fit attained by each of the

different model components.

Our parameter estimates suggest that time-varying disasters and stochastic volatility

are significant drivers of consumption growth across the world, providing strong empirical

support in favor of the models of Bansal and Yaron (2004) and Wachter (2013). Likelihood

ratio tests corroborate these findings by showing that allowing for stochastic consump-

tion volatility or time-varying disasters yields a significant improvement in the goodness

of model fit for every country in our data sample. A model that allows both for stochas-

tic volatility and time-varying disasters best fits the data, closely matching moments of

international consumption data. Estimates of the posterior sample path of the disaster

intensity and the stochastic volatility of consumption in the U.S. showcase that periods of

negative consumption growth are associated with high consumption uncertainty and high

disaster intensity. These empirical observations are consistent with the recent models of

countercyclical consumption volatility, as in Andrei et al. (2016).

In spite of these positive results, our parameter estimates critically differ from esti-

mates of the existing literature. Recently, Schorfheide et al. (2018) study a discrete-time

model of consumption growth with long-run risks and measurement errors, but without

disasters. The model of Schorfheide et al. (2018) is estimated via a Bayesian methodology

using similar consumption data as ours. We pursue a frequentist approach, and estimate

our model via maximum likelihood. Consistent with Schorfheide et al. (2018), we find that

stochastic volatility is a significant driver of consumption growth in the United States.

We also estimate shocks to stochastic consumption volatility to be similarly persistent as

Schorfheide et al. (2018). Where we differ is in our estimates of the magnitudes of these

shocks: We estimate the volatility of consumption growth volatility to be about 10 times
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smaller than Schorfheide et al. (2018).2 We also cannot find the persistent component

of expected consumption growth to be significantly large or time-varying. These finding

lie at odds with estimates obtained by calibrating long-run risks models to asset pricing

data, such as in Bansal and Yaron (2004), and suggest that calibrating a consumption

growth model to asset pricing data may overstate the role of a persistent component in

the expected consumption growth rate. Our findings on the insignificance of the persistent

component of expected consumption growth are consistent with novel evidence by Beeler

and Campbell (2012), who find only little evidence of predictability in U.S. consumption.

We find strong evidence in support of the occurrence of disasters across the world.

However, the disasters we estimate are small and frequent: On average, we find that

a disaster of about −3% occurs once every 13 months in one of the countries in our

data. These estimates stand in stark contrast to the calibrated parameter values of Barro

(2006), Barro and Jin (2011), and Barro and Ursúa (2017), who claim that disasters of

about −20% occur one every 25 years. Our estimates imply similarly frequent and mild

disasters as estimated by Backus et al. (2011), who look at U.S. equity option data to

infer on the dynamics of consumption disasters. Going beyond Backus et al. (2011), we

also allow for the rate of disaster arrival to vary over time in a mean-reverting fashion as

in Wachter (2013). We find strong evidence that disaster rates rates vary strongly over

time in all countries in our data. Shocks to the rate of disaster arrival are estimated to be

similarly persistent as in Wachter (2013): A shock to the disaster rate in our model has

a half-life of about 6.57 years, compared to 8.66 years in Wachter (2013). In contrast to

Wachter (2013), however, our estimates imply smaller and more frequent disasters. Our

results on the properties of consumption disasters are consistent with Julliard and Ghosh

(2012), who non-parametrically estimate the frequency of disasters in the U.S. and several

OECD countries, and conclude that this frequency is much higher than implied by the

estimates in the disaster literature.

An analysis of the model-implied marginal distribution and moments of consumption

growth shows that the main driver of the differences between our estimates and those of

2Our estimate of the volatility of consumption growth volatility is more in line with the estimate of

Bansal et al. (2012).
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Barro (2006), Barro and Jin (2011), Barro and Ursúa (2017), and Wachter (2013) is that

we do not impose any left-tail moment match. As is standard in the disaster literature,

the aforementioned studies calibrate the distribution and average frequency of disasters to

match large declines in historical consumption data. We, on the other hand, estimate the

distribution and frequency of disasters jointly with all other model parameters via maxi-

mum likelihood. Our analysis shows that a model that incorporates time-varying disasters

but neglects long-run risks tends to overemphasize moments related to the left-tail of the

empirical consumption growth distribution. In contrast, a model that incorporates long-

run risks but neglects disasters tends to overemphasize moments related to the center of

the consumption growth distribution. A full model that incorporates both time-varying

disasters and long-run risks balances out these two forces, and yields estimates that are

associated with small moment-matching errors. Our results have important implications

for the modeling of consumption growth in asset pricing studies. They suggest that it is

necessary to unify long-run risk and disaster models to properly capture the distribution

of historical consumption data.

The rest of this paper is organized as follows. Section 2 introduces our models. Section

3 postulates our estimation methodology, and describes the data. Sections 4 presents and

discusses our parameter estimates. A comparative analysis of the different nested models

is carried out in Section 5.

2 A model of consumption growth

We posit a state-space model for consumption growth. In our model, the instantaneous

growth rate of consumption fluctuates around its expected value due to the presence of

several sources of risk. One natural source of risk is diffusive risk that would prevail if

consumption growth behaved as a random walk. However, Schorfheide et al. (2018) re-

cently reject the null hypothesis that consumption evolves as a random walk. We therefore

allow for additional sources of risks that differentiate our model from the random walk

model. Inspired by the long-run risk model of Bansal and Yaron (2004), we allow the

expected consumption growth rate and the instantaneous consumption volatility to be
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dynamic and time-varying. Furthermore, we allow for the occurrence of large and unex-

pected drops in consumption as in the disaster literature (Barro (2006), Wachter (2013),

and others). Overall, our model of consumption growth will feature four distinct sources

of risk: diffusive risk, stochastic volatility, time-varying growth rate, and disastrous jumps.

We choose to work in continuous time when modeling consumption growth. We do

so in order to be able to exploit recently developed tools for the exact and efficient

estimation of multivariate continuous-time models with jumps via maximum likelihood.

The availability of likelihood inference tools allows us to carry out a formal statistical

analysis of the different sources of risk driving consumption growth in the data. If we

were to model consumption growth in discrete time, then the evaluation of the likelihood

would be difficult. It would involve several approximations that may yield inefficient or

biased parameter estimates.3

We lay out our model for consumption growth. Let a unit of time be one year, and

∆ be the frequency of the observation of consumption data (i.e., ∆ = 1 for annual data).

We assume that X1,t is a stochastic process that measures log-consumption and evolves

according to the stochastic differential equation

dX1,t = (µ+ gt) dt+ σvtdW1,t + dJt, X1,0 = 0. (1)

Here, W1 is a standard Brownian motion, and

Jt = −
∑
n≥1

ζEn1{Tn≤t} (2)

is a pure-jump process with jump times (Tn)n≥1 and stochastic intensity λt that we will

specify below. The factors gt, vt, and λt introduce time variation in the conditional growth

rate, volatility, and jump frequency of consumption. We specify these factors in the fol-

lowing sections.

3See Detemple et al. (2006), Giesecke and Schwenkler (2018), and Giesecke and Schwenkler (2017) for

theoretical and numerical evidence on this issue.
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2.1 Long-run risks

With vt we model transitory long-run volatility shocks as in Bansal and Yaron (2004).

The presence of vt introduces stochastic volatility in consumption growth. We take

vt = exp (vX3,t) (3)

for a process X3 that solves the stochastic differential equation

dX3,t = −κ3X3,t + dW3,t. (4)

with non-negative scalars v and κ3. Here, W3 is an independent standard Brownian mo-

tion, and X3,0 = 0 is fixed for simplicity.4 The factor vt scales the conditional volatility of

consumption growth up and down over time around the baseline value of σ.

The parameter κ3 gives an inverse measure of the persistence of the stochastic volatil-

ity factor: We could rewrite (4) as an AR(1) model, in which case e−κ3∆ would be the

autoregressive coefficient. The parameter v, on the other hand, measures how sensitive

consumption growth is to transitory long-run volatility shocks. When v = 0, the factor

vt = 1 almost surely for all t ≥ 0, and consumption growth volatility is constant. In that

case, there are no transitory long-run volatility shocks.

The factor gt drives the expected growth rate of consumption growth. With this factor

we model persistent long-run risk shocks as in Bansal and Yaron (2004). We assume that

gt = φX2,t (5)

for a stochastic process X2,t that solves the stochastic differential equation

dX2,t = −κ2X2,t + vtdW2,t (6)

for an independent standard Brownian motion W2, an X2,0 = 0.5 The persistent long-run

risk factor is centered around zero but does not have Gaussian conditional distributions

due to the presence of the stochastic volatility factor vt in equation (6). Still, E[gt] = 0

for all t ≥ 0. The parameter µ in (1) therefore measures the average consumption growth

4We have experiment with randomized initial value X3,0 and found no major changes in the results.
5Alternative fixed or random choices of X2,0 have little impact on our results.
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rate, and φ measures the sensitivity of the expected consumption growth rate to long-run

risk shocks. When φ = 0, then there are no persistent long-run risk shocks to the expected

growth rate of consumption. When φ > 0, the parameter κ2 gives an inverse measure of

the persistence of a long-run growth risk shock. Equation (6) can also be rewritten as an

AR(1) model with e−κ2∆ as the autoregressive coefficient.

2.2 Disasters

The jump process J in (1) introduces disasters as in the model of Barro (2006). Note

that Jt = Js almost surely for any 0 ≤ s < t < ∞ unless a jump occurs at some point

between times s and t. If a jump occurs at time Tn, then the process J jumps down,

pulling log-consumption down with it:

∆X1,Tn = ∆JTn = −ζEn,

where we assume that En is an independent sample of a standard exponentially distributed

random variable, and ζ is a non-negative scalar. The realization of−ζEn can be interpreted

as a disaster in the sense of Barro (2006).

Disasters in our model occur at the stochastic rate λt, which measures the conditional

rate of disaster arrival (i.e., the conditionally expected number of disaster over a unit of

time). We assume that

λt = `0 exp (`1X4,t) (7)

for non-negative scalars `0 and `1. Here, X4 is a stochastic process that satisfies

dX4,t = −κ4X4,tdt+ dW4,t. (8)

for an independent standard Brownian motionW4, a non-negative scalar κ4, andX4,0 = 0.6

Because X4 satisfies Ornstein-Uhlenbeck dynamics, its conditional law is Gaussian with

finite variance. This implies that E[
∫ ∆

0
λsds] <∞ so that the process J does not explode.

The process X4 introduces time-variation in the arrival rate of disasters if `1 > 0.

In that case, the time-varying disaster intensity is mean-reverting, similarly as in the

6Randomized choices of X4,0 have no major influence on our results.
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model of Wachter (2013). The arrival rate of disasters is time-invariant whenever `1 = 0.

The parameter κ4 inversely measures the persistence of disaster intensity shocks: In an

AR(1) formulation of (8), e−κ4∆ would be the autoregressive coefficient. The parameter `1

captures how strongly the disaster intensity varies over time around the baseline disaster

intensity `0. In contrast, the parameter ζ measures the average magnitude of a disaster.

There are no disasters whenever ζ = 0 and `0 = 0.

3 Estimation approach

Our goal is to estimate the vector θ = (µ, σ, φ, κ2, v, κ3, ζ, `0, `1, κ4) of parameters gov-

erning the dynamics of consumption growth, long-run growth risk, stochastic volatility,

and disasters. Each one of these parameters drives a different feature of the conditional

distribution of consumption growth. We summarize the role played by each parameter

in Table 1. We will use observations of log-consumption to estimate the parameters via

maximum likelihood.

3.1 Data structure & measurement errors

We assume that the data is observed every ∆ units on time, and that there are m + 1

data points available for inference. We do not assume that the available data are clean

observations of the underlying log-consumption process. Instead, we make the assumption

that the data is contaminated with potential measurement errors. At any observation time

point i∆, the observed data is

X̃1,i∆ = X1,i∆ + ενi, (9)

where (νk)k≥0 is a sequence of i.i.d. standard normal noise variables. The parameter ε mea-

sures the standard deviation of measurement errors. When ε = 0, there are no measure-

ment errors. Controlling for measurement errors may be important for obtaining accurate

parameter estimates with small standard errors.7 Because of this, we will also estimate

the parameter ε from the data.

7This is highlighted by Schorfheide et al. (2018), who emphasize that meaningful estimates of the

persistence of long-run risk shocks can only be obtained when controlling for measurement errors.
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In total, the data that is available for inference is

Dm = {X̃1,0, X̃1,∆, . . . , X̃1,m∆}.

There is no data on the long-run growth risk factor gt, the stochastic volatility factor

vt, the disaster intensity factor λt, and the error variables (νi)1≤i≤m. These processes are

latent. The presence of latent factors poses significant challenges for the estimation of the

model. We address these challenges in the following section.

3.2 Econometric methodology

Our goal is to estimate the joint dynamics of X1, g, v, and λ, as well as the measure-

ment error standard deviation ε. Due to our modeling choices in (1)-(9), the estima-

tion problem is equivalent to estimating the dynamics of the multidimensional process

X = (X1, X2, X3, X4) with measurement errors. The process X is a multivariate jump-

diffusion process that satisfies the following stochastic differential equation:

dXt =


µ+ φX2,t

−κ2X2,t

−κ3X3,t

−κ4X4,t

 dt+


σevX3,t 0 0 0

0 evX3,t 0 0

0 0 1 0

0 0 0 1

 dWt + dJt (10)

for a four-dimensional standard Brownian motion W = (W1,W2,W3,W4), and a non-

explosive jump process

Jt =
Nt∑
n=1


−ζEn

0

0

0

 (11)

with intensity λt = `0e
`1X4,t . The process X specified in (10)-(11) is Markovian. If we had

complete data that included observations (X2,i∆, X3,i∆, X4,i∆) of the latent factors and

the error variables νi for all 0 ≤ i ≤ m, the likelihood at a given parameter θ would be
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the product of the transition density of X and the likelihood of the measurement errors:

Lcm(θ) =
m∏
i=1

p∆




X̃1,(i−1)∆ − ενi−1

X2,(i−1)∆

X3,(i−1)∆

X4,(i−1)∆

 ,


X̃1,i∆ − ενi
X2,i∆

X3,i∆

X4,i∆

 ; θ


m∏
i=1

φ (νi; 0, 1) . (12)

Here, φ(·; a, b) is the density of the normal distribution with mean a and standard deviation

b, and p∆ is the transition density of X specified by (10)-(11). Because the data does not

include observations of the latent factors and the noise variables, the likelihood in our

setting is the projection of the likelihood ratio onto the data space,

Lm(θ) = Eθ∗
[
Lcm(θ)

Lcm(θ∗)

∣∣∣∣ Dm

]
. (13)

Here, θ∗ is the true data-generating parameter, and Eθ denotes the expectation operator

under the measure P when the parameter governing (10)-(11) is θ. Going forward, we will

write Pθ when referring to the measure P when the underlying parameter is θ.

The likelihood (13) is generally intractable. This is due to two reasons. First, the

evaluation of the likelihood requires that we evaluate the transition density p∆ of the

multivariate jump-diffusion process specified in (10)-(11). The model (10)-(11) is not

affine, which makes the evaluation of the density p∆ difficult using standard tools.8 Second,

the likelihood (13) involves a conditional expectation that is evaluated with respect to

the conditional distribution of the latent factors given the observed factor data. Such

conditional expectations are difficult to evaluate for multivariate jump-diffusion processes

as the one in (10)-(11).

We circumvent these difficulties by exploiting the recently developed methodology

of Guay and Schwenkler (2018) for the efficient estimation of multivariate jump-diffusion

processes. Inspired by Guay and Schwenkler (2018), we resolve the filtering problem by

evaluating the likelihood under the null hypothesis that the true law generating the data

is not Pθ∗ , but rather an equivalent measure P∗ under which:

i) the sample paths (X2,i∆)0≤i≤m, (X3,i∆)0≤i≤m, and (X4,i∆)0≤i≤m of the latent factors

are realizations of random walks that are independent of each other and of X1,

8 A similar model albeit in discrete time and without disasters is analyzed by Schorfheide et al. (2018).
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ii) the realizations (X1,i∆ −X1,(i−1)∆)0≤i≤m of consumption growth are i.i.d. normally

distributed with mean µ∗ and standard deviation σ∗, and

iii) there are no measurement errors.

Such a measure P∗ is equivalent to Pθ for any parameter θ, and can be constructed via a

standard Radon-Nikodym density.9 Indeed, we can show that

Lm(θ) ∝ E∗
[
Lcm(θ)

L∗m

∣∣∣∣ Dm

]
, where (14)

L∗m =
m∏
i=1

φ
(
X2,i∆;X2,(i−1)∆, 1

)
φ
(
X3,i∆;X3,(i−1)∆, 1

)
φ
(
X4,i∆;X4,(i−1)∆, 1

)
×

m∏
i=1

φ
(
X̃1,i∆ − X̃1,(i−1)∆;µ∗, σ∗

) m∏
i=1

φ (νi; 0, 1)

and E∗ denotes the expectation operator under the new reference measure P∗. The rep-

resentation (14) facilitates the estimation of the likelihood via simulation. Whenever the

density p∆ is known, a simulation-based estimator of (14) can be constructed by gener-

ating i.i.d. samples of (X2,i∆, X3,i∆, X4,i∆, νi)0≤i≤m under the measure P∗. This task can

be easily accomplished because the latent factors follow random walk models under P∗.

Our approach for estimating the likelihood function extends the approach of Guay and

Schwenkler (2018) by allowing for measurement errors.

We apply the methodology of Guay and Schwenkler (2018) to estimate the density

p∆. Guay and Schwenkler (2018) derive a simulation-based estimator p̂∆ of the transition

density p∆. This estimator can be written as p̂∆(v, w; θ) = P (v, w; θ,R) for an analytical

function R that is known in algorithmic form, and a vector R of F0-measurable random

variables that do not depend upon the arguments (v, w; θ) of the density. A key feature

of the density estimator of Guay and Schwenkler (2018) is that it is unbiased for all

arguments of the density:

E [P (v, w; θ,R)] = p∆(v, w; θ).

9The measure P∗ is equal to the measure Pθ with a parameter vector θ for which µ = µ∗, σ = σ∗, and

φ = v = ζ = κ2 = κ3 = κ4 = ε = 0.
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The density estimator has finite variance and can be computed in finite time. Because of

this, we can replace the true density p∆ in (12) with the simulated density p̂∆, and still

obtain an unbiased estimator of the likelihood in (14).

We summarize the steps we take to estimate the likelihood (14) in Algorithm 3.1.

The correctness of Algorithm 3.1 follows from Guay and Schwenkler (2018). The number

K of Monte Carlo samples used in Algorithm 3.1 controls the accuracy of the likelihood

approximation. Larger values of K are associated with more precise estimates of the

likelihood.

Algorithm 3.1. Fix an integer K for the total number of Monte Carlo replications to be

used to estimate the likelihood (14).

(1) Generate a sequence
(
R(k)

)
k=1,...,K

of independent replications of the random vector

R as in Guay and Schwenkler (2018).

(2) Generate K independent sample paths
(
(X

(k)
2,i∆)i≤m

)
k=1,...,K

,
(
(X

(k)
3,i∆)i≤m

)
k=1,...,K

, and(
(X

(k)
4,i∆)i≤m

)
k=1,...,K

of independent random walks.

(3) For k = 1, . . . , K, compute:

Lc,(k)
m (θ) =

m∏
i=1

p∆




X̃1,(i−1)∆ − εν(k)

i−1

X
(k)
2,(i−1)∆

X
(k)
3,(i−1)∆

X
(k)
4,(i−1)∆

 ,


X̃1,i∆ − εν(k)

i

X
(k)
2,i∆

X
(k)
3,i∆

X
(k)
4,i∆

 ; θ


and

L∗,(k)
m =

m∏
i=1

φ
(
X

(k)
2,i∆;X

(k)
2,(i−1)∆, 1

)
φ
(
X

(k)
3,i∆;X

(k)
3,(i−1)∆, 1

)
φ
(
X

(k)
4,i∆;X

(k)
4,(i−1)∆, 1

)

×
m∏
i=1

φ
(
X̃1,i∆ − X̃1,(i−1)∆;µ∗, σ∗

)
,

An unbiased estimator of the likelihood (14) is given by

L̂Km(θ) =
1

K

K∑
k=1

Lc,(k)
m (θ)

L∗,(k)
m

. (15)
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We compute approximate maximum likelihood estimators θ̂Km by maximizing the

likelihood of Algorithm 3.1:

θ̂Km ∈ arg max
θ∈Θ

L̂Km(θ)

Here, Θ is a parameter space that contains all admissible parameters for our model. We

assume that µ ∈ [−0.25, 0.25], σ ∈ [10−8, 1], φ ∈ [0, 1], κ2 ∈ [0, 3], v ∈ [0, 1], κ3 ∈

[0, 3], ζ ∈ [0, 3], `0 ∈ [10−8, 1], `1 ∈ [0, 3], κ4 ∈ [0, 3], ε ∈ [0, 1], and fix the parameter

space Θ as the product of these intervals. Under mild assumptions, it is possible to show

that θ̂Km is a consistent estimator of θ∗ if K → ∞ as m → ∞, and that
√
m(θ̂Km −

θ∗) is normally distributed with the same asymptotic variance-covariance matrix as true

maximum likelihood estimators if m
K
→ 0 as both m → ∞ and K → ∞; see Guay

and Schwenkler (2018). This yields our parameter statistically efficient, and implies that

standard t-tests for statistical significance apply in our setting.

3.3 Nested models

In addition to Model (9)-(11), we will also estimate and analyze several models nested

in our specification; see Table 2. If φ = v = ζ = 0, then the resulting model has no

long-run risk and no disasters. Such a model posits log-consumption as a random walk,

and we will estimate its free parameters µ and σ from the data as well. A second model

we will estimate is a model that only allows for persistent long-run growth risk by setting

v = ζ = 0. A long-run growth risk model has four free parameters, namely µ, σ, φ, and κ2.

A third model we will estimate only allows for stochastic consumption growth volatility.

Such a model restricts φ = ζ = 0, and has 4 free parameters: µ, σ, v, and κ2. A long-run

risk model in the spirit of Bansal and Yaron (2004) is obtained by restricting ζ = 0. Such

a model has 6 free parameters: µ, σ, φ, κ2, v, and κ3. We will also estimate two types of

disaster models. The simpler disaster model assumes that the disaster intensity is constant

as in Barro (2006). Such model restricts v = φ = `1 = 0 and has 4 free parameters: µ, σ, ζ,

and `0. A more complex disaster model allows for a stochastic and mean-reverting disaster

intensity as in Wachter (2013). This model has 6 free parameters (µ, σ, ζ, `0, `1, κ4) and

restricts φ = v = 0. We will estimate and analyze these nested models both in the absence
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(ε = 0) and the presence (ε > 0) of measurement error.

In addition to using t-tests to assess the significance of each model parameter, we

will also use likelihood ratio tests to determine the incremental fit obtained by relaxing

the restrictions of the nested models. Suppose that θ̂Km,R and θ̂Km,U are the parameter

estimates computed with our methodology for a restricted model R and and unrestricted

model U , respectively. The unrestricted model achieves a better fit to the data than the

restricted model because it has more free parameter to match moments of the data. A

fair evaluation of the incremental fit achieved by the more complex unrestricted model

therefore needs to take into account the number of additional parameters used to achieve

the better fit. An unrestricted model that achieves a significantly better fit with few

additional parameters should be preferred over an unrestricted model that only achieves

a marginally better fit but that has many additional parameters. Likelihood ratio tests

provide a quantitative approach to evaluate the trade-off between better goodness-of-it

and higher model complexity. We can show that the likelihood ratio statistic implied by

our methodology,

LR(U,R) = 2
(
L̂Km

(
θ̂Km,U

)
− L̂Km

(
θ̂Km,R

))
, (16)

has a chi-squared asymptotic distribution as m,K → ∞ and m
K
→ 0. The degrees of

freedom of the asymptotic chi-squared distribution is equal to the number of additional

parameters in the unrestricted model. The availability of likelihood ratio tests next to

the t-tests of Guay and Schwenkler (2018) empowers us with tools to carry out formal

statistical analysis of the full model and the nested submodels.

3.4 The data

We estimate the models of Table 2 using consumption growth data. We use the Barro-

Ursúa data set for this.10 The data contain annual observations of real per capita consumer

expenditure for a cross section of countries. We select the following countries for our

analysis:

10This data set can be downloaded from https://scholar.harvard.edu/barro/publications/

barro-ursua-macroeconomic-data.
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• Australia (available data: 1901-2009, 109 observations)

• Germany (available data: 1851-2009, 159 observations)

• Japan (available data: 1874-2009, 136 observations)

• United States (available data: 1834-2009, 176 observations)

For the U.S., we expand the Barro-Ursúa data by including data on real per capita

consumer expenditure for the years 2010 through 2016, which we obtain from the Federal

Reserve Bank of St. Louis FRED website. This gives us a total of 183 annual consumption

observations for the United States.

4 Full model

Table 3 reports the parameter estimates of the full model for the different countries in our

data sample. We see that the average growth rate and the average volatility parameters

are significant across countries. We also see that the disaster intensity is estimated to be

significantly time-varying in all countries. The disaster magnitude estimated by the full

model is significantly large in Australia, Germany, and the U.S.. The disaster magnitude

estimated by the full model with measurement errors is significantly large in Germany and

Japan. Stochastic consumption volatility is significant in the U.S., but not in the other

countries we consider in our data. We cannot find any evidence of a significant persistent

component in consumption growth (φ > 0). We can also not identify significantly large

measurement errors (ε > 0).

Figure 1 shows the sample path of realized consumption growth in the U.S., and

compares this path to the posterior sample path of the persistent consumption growth

component φgt, the stochastic volatility σvt of consumption growth, and the disaster in-

tensity λt. We see that the earlier part of our sample period was associated with high

consumption volatility, and that the posterior mean of consumption volatility has come

down in the past 50 years. Similarly, the posterior mean of the disaster intensity was high

in the earlier parts of our sample periods, and has stabilized around a value of 1.3 disas-

ters per year in the last 120 years. We also see that the posterior mean of consumption
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volatility and the posterior mean of the disaster intensity spike up during periods of nega-

tive consumption growth, suggesting that such periods are associated with high economic

uncertainty and high economic risks. One of the periods with the largest negative con-

sumption growth rates is associated with the great depression. During that period we also

observe the highest posterior mean of consumption growth volatility. These observations

are consistent with the learning model of Andrei et al. (2016). In that model, agents infer

from bad productivity shocks that productivity will remain low for a long stretch of time,

resulting in more volatile consumption. This yields countercyclical consumption volatility

patterns as those reflected in the posterior means of Figure 1.

4.1 Relation to existing estimates in the literature

Our estimated suggest that disasters are a significant driver of consumption growth in all

four countries in our data sample. There is some heterogeneity in the disaster estimates

across countries: Some countries experience larger disasters, other countries experience

disasters more frequently. For example, our estimates suggest that an average disaster of

−1.20% arrives every 1.12 years in Japan, while in Australia an average disaster of −4.66%

arrives every 7 months. Across the board, however, disaster magnitudes are much smaller

and more frequent than calibrated by Barro (2006), Barro and Jin (2011), Barro and

Ursúa (2017), and others. For example, using the same data as we use, Barro and Jin

(2011) estimate that a disaster of median size of −19% arrives once every 26 years in the

U.S.. In contrast, we estimate that in the U.S. a disaster of median size of −0.01% arrives

once every 1.27 years.11 Our estimates of the average disaster magnitude and the average

disaster frequency for the U.S. are comparable to the estimates of Backus et al. (2011).

Using options data, Backus et al. (2011) estimate than an average U.S. consumption

disaster of −0.74% arrives once every 9 months.

We also find that the arrival rate of consumption disasters is strongly time-varying.

This is illustrated in Figure 1, which shows that the posterior mean of the U.S. dis-

aster intensity can spike up during periods of low consumption growth. Our estimates

11The long-run mean of the time-varying intensity in our model is `0 exp( 1
2
σ2

2κ4
) due to the Gaussian

distribution of X4.
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provide strong support for the time-varying disaster model of Wachter (2013). In the

model of Wachter (2013), disasters arrive at an intensity that evolves as a Cox-Ingersoll-

Ross process. In contrast, the disaster intensity in our model evolves as an exponential

Ornstein-Uhlenbeck process. In spite of these differences, our estimates of the persistence

of disaster intensity shocks in the U.S. is similar to that estimated by Wachter (2013): Our

estimate of κ4 for the U.S. is 0.11, and the corresponding estimate of Wachter (2013) is

0.08. In contrast to Wachter (2013), our estimate of the average U.S. disaster intensity is

much larger. Wachter (2013) estimates that a disaster occurs in the U.S. on average every

28 years, similarly as in Barro (2006), Barro and Jin (2011), Barro and Ursúa (2017), and

others. We find that a disaster occurs every 1.27 years, which is about as frequent as in

Backus et al. (2011).

Many of the differences between our disaster estimates and those established by the

literature can be explained by differences in the estimation approaches. In Barro (2006),

Barro and Jin (2011), Barro and Ursúa (2017), and Wachter (2013), disasters are cali-

brated to match the left tail of consumption growth. In contrast, we estimate the magni-

tude and frequency of disasters together with the other model parameters via maximum

likelihood. By doing so, we do not restrict our econometric methodology to explicitly fit

certain moments of the consumption growth distribution. Instead, we allow the maximum

likelihood methodology to estimate the model parameters as to minimize the distance

between the model-implied and the empirical distribution of the data. As showcased in

Table 4, the moments implied by our parameter estimates closely reflect moments in the

data. We conclude that by enforcing a match of left-tail moments of consumption growth,

the resulting disaster severity and frequency may be overly conservative. This conclusion

is consistent with Julliard and Ghosh (2012), who non-parametrically estimate the prob-

ability of experiencing a disaster on any given year in the U.S. and a series of OECD

countries without imposing a left-tail match, and find that this probability is much larger

than implied by Barro (2006).

Schorfheide et al. (2018) estimate a generalization of the long-run risk model of Bansal

and Yaron (2004) via a Bayesian methodology using only consumption data for the United

States. Bansal et al. (2012) calibrate a long-run risk model to annual U.S. consumption and
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asset pricing data. Both of these studies find supporting evidence in favor of a persistent

consumption growth component as well as of persistent stochastic consumption volatility.

In contrast to the aforementioned studies, we only find empirical support of persistent

stochastic consumption growth volatility. If we were to translate our estimate of κ2 to

a monthly AR(1) coefficient analogous to the one estimated by Bansal et al. (2012) and

Schorfheide et al. (2018) for stochastic consumption growth volatility in the U.S., we would

obtain an estimate of 0.999. This estimates is the same as the analogous estimate of 0.999

by Bansal et al. (2012), and falls inside of the 90% credible band estimate by Schorfheide

et al. (2018) that reaches from 0.976 to 0.999. The estimates of Schorfheide et al. (2018)

imply 90% confidence bands for our parameter v ranging between 0.092 and 0.190. Our

estimate of v for the U.S. of 0.011 lies below this credible band, and is slightly higher

than the analogous estimate of 0.006 of Bansal et al. (2012). The differences between our

estimates and the estimates of Bansal et al. (2012) and Schorfheide et al. (2018) may be

explained by the fact that we also control for disasters when evaluating the significance

of stochastic volatility for modeling consumption growth.

We cannot find the parameter φ to be significantly positive in any country, suggesting

that there is only insignificant time-variation in expected consumption growth rates. This

finding lies in contrast to estimates of φ calibrated from asset pricing data in Bansal and

Yaron (2004), Bansal et al. (2012), and others. In those studies, the parameter φ plays

a key role for matching asset pricing moments. Our findings suggest that consumption

growth data may not support strongly time-varying expected consumption growth rates,

and that the role of a persistent component in the expected consumption growth rate may

be overstated if calibrated from asset pricing data. These conclusions are consistent with

evidence of Beeler and Campbell (2012), who find only little evidence of predictability in

U.S. consumption growth data.

We also cannot find any evidence of significant measurement errors in any country.

This lies in agreement with Schorfheide et al. (2018), who can only identify minor mea-

surement errors for annual consumption growth in the U.S. using a Bayesian estimation

approach. Similarly as in Schorfheide et al. (2018), we find that controlling for measure-

ment errors can help with the identification of some model parameters. For example, in
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the U.S. we estimate much smaller and less significant disasters in a model that controls

for measurement errors than in a model that does not control for measurement errors. In

Japan, we can establish the significance of the average disaster magnitude parameter only

when controlling for measurement errors. These observations suggest that measurement

errors may be small in annual consumption data, but that controlling for the influence of

measurement errors is an important econometric tool to accomplish good identification.

5 Nested models

Tables 5 through 8 report the parameter estimates for the nested models fitted to Aus-

tralian, German, Japanese, and U.S. consumption data. These estimates provide several

new insights. On the measurement error front, we still find little evidence of significant

errors; only in Japan do we sometimes find the parameter ε to be significantly large. The

models that allow for time-invariant disasters (Models “DIS” and “DIS+ME”) cannot

identify significant disasters in any country. This observation lies at odd with the disaster

estimates of Barro (2006), Barro and Jin (2011), and Barro and Ursúa (2017), and pro-

vides further evidence in support of the hypothesis that calibrating disasters to the left

tail of the empirical consumption growth distribution may overstate the role of disasters

in historical consumption data.

We identify significant disasters in Australia and Germany only when allowing for

time-variation in the disaster intensity (Models “TVDIS” and “TVDIS+ME”). For those

countries, the parameter estimates for the average disaster magnitude ζ, the baseline

disaster rate `0, the volatility `1 of the disaster intensity, and the speed of reversion κ4 of

the disaster intensity are significantly large and similar to the estimates reported for the

full models in Table 3. We cannot find the average disaster magnitude to be significantly

large in Japan and the U.S., even though the baseline disaster rate, the disaster intensity

volatility, and the disaster intensity speed of reversion are found to be significantly large

for these countries. The disaster estimates for Japan and the U.S. in the restricted models

that allow for time-varying disaster intensities (“TVDIS” and “TVDIS+ME”) are also

similar to the estimates reported for the full models in Table 3. Overall, these results
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provide further support in favor of the time-varying disaster model of Wachter (2013),

albeit with small and frequent disasters as in Backus et al. (2011).

In Australia, Germany, and Japan, the nested models that allow for stochastic volatil-

ity (Models “LRVR”, “LRVR+ME”, “LRR”, and “LRR+ME”) estimate significant time-

variation and persistence in the volatility of consumption growth. The estimates of the

speed of reversion κ3 of stochastic volatility in these countries imply monthly AR(1)

coefficients that lie inside of the 90% credible bands estimated for this parameter by

Schorfheide et al. (2018) based on U.S. data. The models that allow for a persistent

component in the expected consumption growth rate (Models “LRGR”, “LRGR+ME”,

“LRR”, and “LRR+ME”) only find this component to be significantly large in Japan.

For that country, our estimates of the speed of reversion κ2 of the persistent consumption

growth component imply a monthly AR(1) coefficient of 0.998, which is comparable to

the monthly AR(1) coefficient estimate of Bansal et al. (2012) for U.S. data. The 90%

credible band implied by Schorfheide et al. (2018) for their AR(1) coefficient ranges 0.923

to 0.978, suggesting that our estimated persistent consumption growth factor for Japan is

more persistent than the analogous factor estimated by Schorfheide et al. (2018) for the

United States. When we compare the estimates of the long-run risk parameters from the

nested models in Tables 5 through 8 to the estimates of the full models in Table 3, we

see that the significance of the long-run risk parameters disappears when we also control

for time-varying disasters. This observation suggests that the role of long-run risks for

explaining historical consumption data may be overstated in a model that neglects the

influence of time-varying disasters.

5.1 Implied moments and distributions

The estimates of the nested models in Tables 5 through 8 suggest that models of con-

sumption growth that do not control for all possible sources of risk may overstate certain

model components. To assess the impact of such overstatements, in Tables 9 through 12

we report model-implied moments for the nested models and compare to moments in the

data. We see that the models that control for long-run risks but not for disasters per-

form well at matching low-order and symmetric moments, such as the mean, the variance,
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and the kurtosis. In contrast, the models that control for disasters but not for long-run

risks match the skewness as well as the left tail of the empirical consumption growth

distribution. The full model balances out these two forces, and generally achieves small

moment-matching errors.

We reach similar conclusions when looking at the model-implied marginal distribu-

tions of consumption growth displayed in Figures 2 and 3 for Japan and the United States.

The model that only includes time-varying disasters and neglects long-run risks tends to

overstate the left tail of the empirical consumption growth distribution. The model that

only includes long-run risks and neglects disasters tends to overstate the center of the em-

pirical distribution. A full model that incorporates both long-run risks and time-varying

disasters tends to perform best in matching the empirical distribution of U.S. consumption

growth.

The model-implied moments and distributions provide a quantitative justification for

the differences between our parameter estimates and those established by the previous

literature. As modeling features, long-run risks and disasters target different parts of

the consumption growth distribution. When one estimates a model that includes one

feature but not the other, necessarily the active feature needs to be overstated in order

to compensate for the missing feature. Our results suggest that models that estimate

long-run risks in the absence of disasters will tend to overstate the role of long-run risks.

Similarly, models that estimate disasters in the absence of long-run risks will overstate the

role of disasters. A full model that incorporates time-varying disasters and long-run risks is

necessary to achieve a good fit to historical consumption data. In this regard, our results

provide validation of a claim by Ludvigson (2013) that states that “the allowance for

disasters in standard models of risk provides an example of how superior specifications may

potentially be obtained by combining elements of several consumption-based models.”

5.2 Likelihood ratio tests

We finalize this section by measuring the incremental goodness-of-fit achieved by allowing

for disaster and long-run growth risk in a consumption growth model. This will allow us to

determine the relative importance of long-run risks and disasters for explaining historical
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consumption data. Table 13 reports the likelihood ratio statistics of (16). The results show

that models that include only long-run risks or only time-varying disasters are preferred

over simple random walk models for all countries in our data. In terms of the different

components of long-run risks models – that is, persistent expected consumption growth

and stochastic volatility – we find that the inclusion of stochastic volatility generally

leads to a more significant increase in the goodness-of-fit of a model than the inclusion of

a persistent long-run consumption growth component. However, we find that the inclusion

of time-varying disasters leads to a higher and more significant increase in the goodness-of-

fit of a model than the inclusion of both stochastic volatility and persistent consumption

growth. The likelihood ratio tests do not provide support in favor of a time-invariant

disaster model. We conclude that the better fit provided by a time-varying disaster model

is primarily achieved through the introduction of time variation in the disaster rate rather

than the introduction of rare disasters per se.

The likelihood ratio tests also show that introducing time-varying disasters to a model

that includes long-run risks always leads to a significant increase in the goodness-of-fit

of the model. In contrast, the inclusion of long-run risks to a model with time-varying

disasters only leads to a significant increase in the fit to U.S. consumption data. The

estimates of the full model reported in Table 3 indicate that this is primarily due to

the inclusion of stochastic volatility rather than the inclusion of a persistent consumption

growth component. This observation is consistent with our interpretation of the likelihood

ratio tests for the models “LRGR+ME” and “LRVR+ME” which only allow for either

persistent consumption growth or stochastic consumption volatility.

All in one, the results of the likelihood ratio tests suggest that time-varying disasters

are a prominent feature of consumption data in the countries we consider. Stochastic

volatility is also supported by the data, although to a lesser degree than time-varying

disasters. Our results favor models of consumption growth that allow for mean-reverting

and time-varying disaster intensities, such as in the model of Wachter (2013). They also

provide some support for models that allow for persistent economic uncertain shocks in

the form of stochastic volatility, such as in the model of Bansal and Yaron (2004).
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Parameter Interpretation Analogy in the literature

µ Annualized average consumption growth rate when no disaster
occurs

This parameter is the same as γ in Barro (2006), 12µ in Bansal
and Yaron (2004),

√
12σ in Schorfheide et al. (2018), and µ in

Wachter (2013).
σ Annualized baseline consumption growth volatility in the absence

of stochastic volatility
This parameter is the same as σ in Barro (2006) and Wachter
(2013), and

√
12σ in Bansal and Yaron (2004) and Schorfheide

et al. (2018).
φ Sensitivity of consumption growth to persistent long-run growth

risk shocks
This parameter is equivalent to the parameter 12ψe in the long-run
risk model of Bansal and Yaron (2004), or 12ψxσ in Schorfheide
et al. (2018).

κ2 Speed of reversion of the persistent long-run growth risk compo-
nent

This parameter is inversely related the persistence of long-run
growth rate shocks. It can be translated to a monthly AR(1) co-
efficient similar to the parameter ρ in the long-run risk model of
Bansal and Yaron (2004) and Schorfheide et al. (2018) by com-
puting e−κ2/12.

v Degree of time-variation of consumption growth volatility This parameter is analogous to
√

12σw in Bansal and Yaron
(2004).

κ3 Speed of reversion of stochastic consumption growth volatility This parameter can be translated to a monthly AR(1) coefficient
analogous to the parameter ν1 in the long-run risk model of Bansal
and Yaron (2004) or ρhc

in Schorfheide et al. (2018) by taking
e−κ3/12.

ζ Average disaster magnitude This parameter is equivalent to the contraction size b in Barro
(2006).

`0 Baseline disaster frequency This parameter is equivalent to the baseline disaster frequency p
in Barro (2006).

`1 Degree of time-variation of the disaster intensity This parameter is equivalent to the parameter σλ of Wachter
(2013).

κ4 Speed of reversion of the time-varying disaster intensity This parameter is analogous to the parameter κ in Wachter (2013).
ε Standard deviation of measurement errors This parameter is equivalent to the parameter σaε in Schorfheide

et al. (2018).

Table 1: Parameters. This table summarizes the roles played by each of the parameters in Model (1)-(7).
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Figure 2: Model-implied marginal distributions for Japan. This figure shows in red the
implied marginal distributions of consumption growth in Japan for the different models we
consider. It also shows histograms of realized consumption growth in black. The marginal
distributions are computed using the methodology of Guay and Schwenkler (2018) with
K = 105 with the parameter estimates from Tables 3 and 7.
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Figure 3: Model-implied marginal distributions for the United States.. This figure shows in
red the implied marginal distributions of consumption growth in the U.S. for the different
models we consider. It also shows histograms of realized consumption growth in black.
The marginal distributions are computed using the methodology of Guay and Schwenkler
(2018) with K = 105 with the parameter estimates from Tables 3 and 8.
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