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1 Introduction

Recent studies find that individual equity option returns are predicted by firm characteristics.

Some of these characteristics are the difference between historical realized volatility and

at-the-money implied volatility (Goyal and Saretto (2009)), idiosyncratic volatility of the

underlying stock (Cao and Han (2013)), option illiquidity (Christoffersen et al. (2014)), and

the slope of the volatility term structure (Vasquez (Forthcoming)).

The goal of our paper is to use a Merton-type capital structure model to determine the

firm’s structural variables that predict equity option returns. In particular, we find that

firm leverage and asset volatility are determinants of future equity option returns. We find

that the effect of financial leverage is much larger and consistent with the model if the

endogeneity of leverage is considered. Empirically, firm leverage and asset volatility are both

negatively related with expected delta-hedged option returns, consistent with the prediction

of the model.

A delta-hedged equity option position consists of a long option position, dynamically

delta-hedged by a short position in the stock, such that the portfolio is not sensitive to the

small movements in the underlying stock. The portfolio is not exposed to risks except for

variance risk and jump risk. Bakshi and Kapadia (2003a) show that the sign and magnitude

of this portfolio return are closely related to the variance risk premium. While much of

the existing knowledge about the variance risk premium is based on the index options, e.g.

Bakshi and Kapadia (2003a), Todorov (2010) and Bollerslev et al. (2009), the variance risk

premium of the individual stocks is less well understood. A natural question is, which firm

characteristics are related to the variance risk premium of the individual stocks? Structural

models following Merton (1974) imply that all contingent claims written on a single firm’s

asset or cash flow should be priced according to the same source of risk factors. Hence, the

theoretical determinants that affect equity risk or credit risk of the firm, such as financial

leverage and asset volatility, may also affect higher order risk premium of the stock, i.e. the

variance risk premium.

Consider two firms with the same asset processes, but different leverage ratios. They

are both exposed to the market volatility risk and market jump risk. The firm with higher
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leverage ratio is more exposed to the market volatility and market jump risk, and has a

higher default probability than the firm with lower leverage ratio. If the price of volatility

risk and jump risk is negative, as suggested Bakshi and Kapadia (2003a) and Carr and Wu

(2009b), the delta-hedged option returns should on average be negative and more negative

for the firm with higher leverage ratio.

To formalize the idea, we derive the expected return of a delta-hedged option portfolio

based on a stylized Merton-type capital structure model. In this model, the dynamic of

the asset value of a firm follows a jump diffusion process. Based on this framework, we

find that the expected return of delta-hedged equity option portfolio relates to several firm-

level structural variables: the the leverage ratio of the firm, the asset volatility and the

debt maturity. The result implies, after dynamically hedging out the option exposure to the

underlying stocks, that the portfolio return is still driven by the determinants of the stock

returns. The reason is that, due to the exposure to variance risk or jump risk, the effect of

the firms’ characteristics on the stock returns is inherited to the variance risk premium of

the firm.

There are two common sources of variance risk: stochastic volatility and jumps. We use a

jump diffusion-type of model instead of a stochastic volatility model for one reason. We show

that a stochastic volatility model for the underlying asset process produces an expected option

return of zero. The main reason is that we price options on options or compound option,

which models equity as an option of the asset process. Note that Bakshi and Kapadia (2003a)

find a non-zero option return since they model equity and its stochastic volatility directly,

not as an option on the asset. In our model, volatility risk in the underlying asset process

can be hedged away by delta hedging the equity, which is an option written on the firm asset.

To test the implications of the model, we examine the cross-section of equity option

returns in the US market. We pick one call (or put) option on each optionable stock at the

end of each month and evaluate the return of the portfolio that buys one call (or put) that

is daily delta-hedged with the underlying stock. The empirical results support the model

implications. First, the delta-neutral strategy that buys equity options and hedges with

the underlying stock significantly underperforms zero. On average, the strategy loses about

1.97% of the initial value of the portfolio. Second, we find that the ex-post variance risk
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premium during the life of the option can explain about 20% of the variation of the delta-

hedged option return, both in the time-series and in the cross section. Third, after controlling

for the anomaly variables such as the idiosyncratic volatility, the difference between realized

volatility and implied volatility, and the slope of the volatility term structure, the delta-

hedged option return is decreasing with leverage, asset volatility and debt maturity. The

result of double sorting portfolios based on asset volatility and leverage ratio shows that

the returns from quintile 1 to quintile 5 along both sorting criteria exhibit monotonic trend,

which is consistent with the theory. Fourth, the results are confirmed in the leverage-based

trading strategies.

This paper contributes to several strands of the literature. First, it adds to a growing

literature that studies the cross section of delta-hedged equity option returns. Previous

papers have identified several characteristics that affect the delta-hedged return in the cross

section of equity options1. Most results from this literature are motivated by volatility-related

option mispricing, investor overreaction, and option liquidity. Our paper departs from these

papers along several dimensions. First, we are the first to show theoretically and empirically

that firm’s structural characteristics affect the delta-hedged option return. In particular,

we show that firm leverage and asset volatility are negativelly related with expected option

returns. Second, our findings augment the literature by showing that the financing decision

of the firm plays a sizable role in generating cross-sectional variations in delta-hedged equity

option returns. To the best of our knowledge, we are the first paper to identify theoretical

determinants of expected delta-hedged equity option returns. Our paper is also related to

González-Urteaga and Rubio (Forthcoming), who find that the market volatility risk premium

and the default premium are key determinants risk factors in the cross-sectional variation

of average volatility risk premium. However, they consider a representative set of portfolios

rather than the equity options on the individual stocks. The focus of our paper is different

from theirs. Our paper contributes to the literature on the credit risk channel of the pricing

of different derivatives on the underlying firm’s asset. The notion that equity is a call option

on the firm’s asset goes back to Merton (1974). Following this philosophy, Geske (1979)

1See Goyal and Saretto (2009), Cao and Han (2013), Vasquez (Forthcoming), Christoffersen et al. (2014)
and Cao et al. (2016).
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models equity options as compound options on firm’s asset, but the firm is not allowed to

declare bankruptcy before the debt matures. Toft and Prucyk (1997) propose an equity

option pricing model that allows for taxes and bankruptcy and show that firm’s leverage and

debt covenants affect option values and implied volatility skew. Ericsson et al. (2009) show

empirical evidence that leverage and volatility are important determinants of credit default

swap premia. More recently, Geske et al. (Forthcoming) study the impact of leverage on the

pricing of equity options. However, the models in these papers only assume one dimension of

randomness in the underlying asset. Hence, they cannot explain the negative delta-hedged

option returns. The model in this paper differs from this stream of literature in that there

are two independent randomnesses in the underlying asset process, such that a more realistic

level of delta-hedged gain of the equity option portfolio can be generated. Some studies

also confirm that equity options indeed contain information about a firm’s default risk and

provides evidence that supports such a credit risk channel, such as Hull et al. (2004), Carr

and Wu (2009a), Carr and Wu (2011) and Culp et al. (2014). We differ from these studies

in that we study the credit risk channel for understanding the equity option returns.

The remainder of the paper is organized as follows. Section 2 presents the capital structure

model, develops and interprets the pricing formulas for options on levered equity. Section 3

describes the data and the summary statistics. Section 4 presents empirical results of double

sorting portfolios and cross-sectional multivariate regressions that control for various firm-

specific variables including size, idiosyncratic volatility and liquidity. It also investigates time

series properties of delta-hedged option returns.

2 Delta-hedged equity option gain in a capital structure model

In this section, we derive the delta-hedged equity option gain in a stylized capital structure

model. Bakshi and Kapadia (2003a) show that the expected delta-hedged option gain is zero

for all one-dimensional Markov price process. As illustrated in Todorov (2010), there are

two sources of market variance risk: the presence of stochastic volatility and the occurrence

of unanticipated jumps. Hence, to generate non-zero expected delta-hedged gain for equity

options as documented in Bakshi and Kapadia (2003b), Goyal and Saretto (2009), and Cao
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and Han (2013), we specify the underlying asset value with a basic jump diffusion process.

In the Appendix, we discuss why stochastic volatility model is not appropriate to generate

non-zero delta-hedged equity option gain in a compound option pricing model.

2.1 The process of firm asset and equity

We start with specifying the process of the firm’s asset value. We consider a firm whose asset

value Vt follows a jump-diffusion process under the physical measure:

dVt

V −t
= µdt+ σdWt + d(

Nt∑
i=1

(Ji − 1)), (1)

where Wt is a standard Brownian process, Nt follows a Poisson distribution with jump inten-

sity λ and Ji is the jump size which is a random variable with mean µj and variance σ2
j . We

further assume that the jump risks related to the jump intensity λ and the jump size Ji are

priced. Hence, after change of measure, the asset value Vt has the following process under

the risk neutral measure Q:

dV Q
t

V Q−
t

= rdt+ σdWt + d(

NQ
t∑

i=1

(JQi − 1)), (2)

where NQ
t and JQi represent the number of jumps and the jump size of the asset return under

the risk neutral measure.

Suppose that the firm issues two classes of claims: equity and debt. On the specified

calendar date T, the firm promises to pay a total of D dollars to the bondholders. In the

event this payment is not met, the bondholders immediately take over the company and the

shareholders receive nothing. The debt is assumed not to have coupon nor embedded option

feature. Default can be triggered only at maturity and this occurs when Vt < D. In addition,

the firm cannot issue any new senior claims on the firm nor can it pay cash dividends or do

share repurchase prior to the maturity date of the debt. The equity of the firm can then be

considered a call option written on the asset of the firm with D as the strike price and T as

maturity.

The value of the equity can be expressed as the discounted expected payoff under the

6



risk neutral measure: St = EQ[e−rt max(Vt −D, 0)]. Under the risk neutral measure Q, the

process of the equity value can be obtained by the Ito’s formula:

dSQt =
∂St
∂Vt

(dV Q)c +
1

2

∂2St
∂V 2

t

σ2V 2
t dt+ d

NQ
t∑

i=1

(S(Vt)− S(Vt−)),

where (dV Q)c = V −t (rdt+σdWQ
t ) is the continuous component of dV under the risk neutral

measure. Rewriting the process in terms of µQSt
and σSt , we have

dSQt

SQt
= µQSt

dt+ σStdW
Q
t + d

NQ
t∑

i=1

(S(Vt)− S(Vt−)), (3)

where σSt = ∂St
∂Vt

Vt
St
σ and µQS = r− λQ

St
EQ[S(V )−S(V−)], because the discounted equity price

process is a martingale under the risk neutral measure. This stylized capital structure model

features the leverage effect through the expression of the stock volatility σSt = ∂St
∂Vt

Vt
St
σ: if

the stock price moved downwards, the market leverage of the firm D
St

and the stock volatility

σSt increases, which in turn produces the contemporaneous negative relation between stock

return and stock volatility. Under the physical measure, the stochastic process of the equity

value is obtained by Ito’s lemma:

dSt =
∂St
∂Vt

dV c
t +

1

2

∂2St
∂V 2

t

σ2V 2
t dt+ d

Nt∑
i=1

(S(Vt)− S(Vt−)), (4)

where dV c = V −t (µdt+ σdWt) is the continuous component of dV and S(V )− S(V−) is the

jump size of the equity value when a jump in the asset process occurs.

2.2 Delta-hedged returns of options on the levered equity

We now turn to the valuation of options written on the levered equity and expected gain of

the delta-hedged option portfolio. The payoffs of the call and put options at maturity are

max(St(Vt) − K, 0) and max(K − St(Vt), 0) respectively. The value of an European option
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on equity S(V ) at time 0 maturing at t, with strike price K is equal to,

O(0, t;K) = e−rtEQ[Max(St −K, 0)],

To remove the impact of the underlying stock movement on the option returns, we consider

the return of a portfolio of a long position in an option, hedged by a short position in the

underlying stock, such that the portfolio is not sensitive to the movement of the underlying

stock price. The delta-hedged gains net of the risk-free rate earned by the portfolio is defined

as,

Π0,t = Ot −O0 −
∫ t

0
∆udSu −

∫ t

0
r(Ou −∆uSu)du, (5)

where Ot is the option price at time t, ∆t = ∂Ot
∂St

is the delta of the option, and r is the risk

free rate. By Ito’s lemma, under the physical distribution, the option price can be written as

Ot = O0 +

∫ t

0

∂O

∂u
du+

∫ t

0

∂Ou
∂Su

dScu +
1

2

∫ t

0

∂2Ou
∂S2

u

dScudS
c
u +

∑
0<u<t

(O(Su)−O(Su−)) (6)

where dScu is the continuous part of dSu. The last part in equation (6) sums up the movement

of the option price due to the discontinuous jumps from time 0 to t. O(Su) is the option

price evaluated at Su which is the stock price immediately after a jump and O(Su−) is the

option price evaluated just before the jump.

Given that the discounted option price process e−rtOt is also a martingale under Q, the

integro-partial differential equation of the option price Ot is given based on Equation 3:

rOt =
∂Ot
∂t

+
∂Ot
∂St

µQSt
St +

1

2

∂2Ot
∂S2

t

(σQSt
)2S2

t + λQEQ[O(St)−O(St−)]. (7)

Combining equations (6) and (7), the option price can be expressed as

Ot = O0 +

∫ t

0

∂Ou
∂Su

dSc +

∫ t

0
(rOu −

∂Ou
∂Su

µQS Su − λ
QEQ[O(Su)−O(Su−)])dt

+
∑

0<u<t

(O(Su)−O(Su−)). (8)
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where µQS = r − λQ

St
EQ[S(V ) − S(V−)]. Therefore, the expected delta-hedged gain is equal

to

E(Πt) = E(Ot −O0 −
∫ t

0

∂Ou
∂Su

dSu −
∫ t

0
r(Ou −

∂Ou
∂Su

Sudu)) (9)

=

∫ t

0
{−λQEQ[O(Su)−O(Su−)] + λQEQ[(S(V )− S(V−))

∂Ou
∂Su

]

− λE[(S(V )− S(V−))
∂Ou
∂Su

] + λE[O(Su)−O(Su−)]}dt.

Note that the dSu term in the first line of Equation (9) is the total change in the stock price

including both the continuous and discontinuous parts. The following proposition shows

the expression of the expected delta-hedged gains in terms of the option gamma, the asset

beta, the asset variance and the stock price. More details of the derivation are provided in

Appendix A.1.

Proposition 1 Let the firm’s asset price process under the physical and risk neutral measures

follow the dynamics given in equations (1) and (2), with an equity process of the firm given

in equation (4) and (3). The expected delta-hedged gain can be expressed as

E(Πt) ≈
∫ t

0

1

2

∂2Ou
∂S2

u

β2
v ((σPv )2 − (σQv )2)S2

udu (10)

where ∂2O
∂S2 is the gamma of the option, βv = ∂Su

∂Vu
Vu
Su

, (σPv )2 = σ2 + λE[J − 1]2 and (σQv )2 =

σ2 + λQEQ[J − 1]2.

From Proposition 1, the expected delta-hedged option gain is directly related to option

gamma, the square of asset beta β2
v , the variance risk premium of the underlying asset

process (σPv )2 − (σQv )2 and the square of stock price S2
u. βv is a measure of elasticity or

leverage in the option literature, when we consider the equity value St as an option on the

underlying asset value. This measure represents percentage change in option price for a one

percentage change in the underlying price. It is called the “embedded leverage” in Frazzini

and Pedersen (2012). In the Appendix, we show that the delta-hedged option gain and the
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variance risk premium of the equity are related in the following equation:

E(Πt) ≈
∫ t

0

1

2

∂2Ou
∂S2

u

dV RP

dt
S2
udu. (11)

Under the special case that the variance risk premium of the underlying asset is a linear

function of variance as in Bakshi and Kapadia (2003a), where (σPv )2 − (σQv )2 = k(σPv )2 and

k measures price of jump risk and the exposure to the market jump risk, the delta-hedged

gain is rewritten as:

E(Πt) ≈
∫ t

0

1

2

∂2Ou
∂S2

u

β2
v k(σPv )2 S2

udu (12)

Hence, the relation between the delta-hedged option gain and firm characteristics depends

on the sign of k. Bakshi and Kapadia (2003a) show that k is significantly negative for the

SP500 index options which represents a negative variance risk premium. Moreover, evidence

in Bakshi and Kapadia (2003b), Goyal and Saretto (2009), and Cao and Han (2013) support a

significantly negative k in the cross section of equity options. Hence, we assume k is negative

in the following otherwise specified.

2.3 The role of leverage and asset volatility in the expected delta-hedged

gain

Proposition 1 shows that the option gamma and firm characteristics such as asset volatility

and asset beta can affect the delta-hedged gain in our model. However, to understand how

firm’s capital structure affect option gamma and asset beta, we need the analytic form of

these two terms. Since the analytic forms of the option gamma and asset beta in terms of

financial leverage are not available under the compound option pricing model with jumps, we

resort to the Black-Scholes model. The magnitude of the impact of the financial leverage on

option gamma and asset beta is different under these two types of models. However, whether

it has a positive or negative effect on option gamma and asset beta should be qualitatively

the same. Under the Black-Scholes model where equity option is an option on the equity,
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the option gamma is expressed as:

∂2O

∂S2
= Ke−rt

φ(d2)

S2
t σS
√
t
,

where d2 =
ln(St/K)+(r−σ2

S/2)t

σS
√
t

and φ(x) = e−
x2

2 /
√

2π. In addition, the volatility of the stock

return and the asset return has the following relation: σS = ∂S
∂V

V
S = βvσv. Substituting the

expression of option gamma in Equation (12), we get

E(Πt)

S0
≈

∫ t

0

1

2

K

S0
e−rt

φ(d2)√
t
βv kσ

P
v du (13)

Given the level of asset volatility σPv and the asset value of the firm Vt, the firm’s capital

structure affects the delta-hedged gain of the option portfolio through asset delta βv = ∂S
∂V

V
S

and φ(d2). In a Black-Scholes model, βv = Φ(dv1)VtSt
, where dv1 = ln(Vt/D)+(r+σ2

v/2)T

σv
√
T

. When

the debt of the firm increases, Vt
St

increases and Φ(dv1) decreases, where the change of St as

the first order effect dominates. Hence, the asset beta is increasing in D, similar as in Merton

(1974). The other term in Equation (13) φ(d2) = e−
d22
2 /
√

2π is also increasing in D:

∂φ(d2)

∂D
=
∂φ(d2)

∂σS

∂σS
∂βv

∂βv
∂D

> 0.

Another feature in the capital structure of the firm, the maturity time of the debt T, also

affects asset beta and φ(d2). When the maturity time of the debt T increases, Vt
St

decreases

and Φ(dv1) increases, where the change of St as the first order effect dominates. As a result,

asset beta βv is decreasing in T. Moreover, φ(d2) is decreasing in T:

∂φ(d2)

∂T
=
∂φ(d2)

∂σS

∂σS
∂βv

∂βv
∂T

< 0.

Hence, other things being equal, the shorter the debt maturity, the more negative the delta-

hedged scaled gain if k is negative. In other words, firms with higher short term debt ratio

should have a more negative delta-hedged scaled gain.

Next, we discuss the effect of asset volatility on βvσ
P
v and φ(d2). In the Black-Scholes

model, the first item is Φ(dv1)σ
P
v Vt
St

. Φ(dv1) and St are both increasing in σPv , but the effect of
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σPv on the numerator dominates the effect of St in the denominator. Hence, βvσ
P
v and φ(d2)

are both increasing in σPv . Proposition 2 summarizes the discussion of the relation between

the firm characteristics and expected delta-hedged gain when k is negative.

Proposition 2 The scaled delta-hedged gain E(Πt)
S0

is decreasing in the face value of the debt

D, decreasing in asset volatility σPv and increasing in debt maturity T.

The capital structure of a firm can be measured by market leverage (ML = D
St

) or book

leverage (BL = D
V−D ). The market leverage is affected by the change of the face value of

the debt (D) and the change of the market price of the equity (St). If the stock price St

decreases, through the leverage effect embedded in our model, βv and σS increases, which

increases the riskiness of the stock and φ(d2). Thus, in the short run, when the fluctuations

in the stock price are the main determinants of variations in the market leverage, market

leverage is more correlated with the scaled delta-hedged gain than the book leverage, which

is not affected by the movement of the stock price. Proposition 3 describes the difference of

market leverage and book leverage on expected delta-hedged gain.

Proposition 3 Due to the leverage effect, the impact of the market leverage on the scaled

delta-hedged gain E(Πt)
S0

is stronger than that of the book leverage.

While the evidence in the literature shows that k is on average negative for the equity

options, the variance risk premium could be positive for some stocks in some periods in a

large cross section of firms. In addition, studies such as Bakshi et al. (2003) and Carr and Wu

(2009b) show that the variance risk premium in the individual options are less negative than

that in the index options. Consequently, the relation of firm characteristics and expected

delta-hedged gain could be different when k is negative and k is positive. The effect of k is

summarized in the following proposition.

Proposition 4 If k is negative, the scaled delta-hedged gain is decreasing in firm leverage

and asset volatility. If k is positive, the scaled delta-hedged gain is increasing in firm leverage

and asset volatility.
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2.4 The endogeneity issue of the firm’s leverage

In the model presented earlier in this paper, firm’s leverage is exogenously given for a specific

firm, similar as in Merton (1974). If the shareholders can potentially maximize the total value

of the firm by choosing the optimal leverage level, such as in the model of Leland and Toft

(1996), firm’s capital structure depends on the underlying asset risk (asset volatility), taxes,

and bankruptcy costs, etc. Intuitively, the endogeneity issue of leverage induces negative

correlation between the underlying asset risk (asset volatility) and leverage. Namely, leverage

decreases with asset volatility, because firm with low asset volatility exploit the tax advantage

of debt while maintaining a low cost of financial distress. The endogeneity of leverage has

been widely confirmed in the empirical literature, such as in Harris and Raviv (1991), Molina

(2005) and Bartram et al. (2015). A recent study by Choi and Richardson (2016) shows that

the true impact of leverage on equity volatility is much larger after controlling asset volatility.

In the context of this paper, the endogeneity of leverage occurs because leverage and delta-

hedged option return are both affected by exogenous and unobservable shocks to the firm’s

fundamental risk. Ignoring the endogenous nature of leverage can lead to an underestimation

of its effect on the delta-hedged option return, and consequently to an under-estimation of

the uncertainty risk premium of the firm. In fact, the empirical results suggest that the

effect of leverage on the delta-hedged option return is substantially stronger when the asset

volatility is controlled.

3 Data

3.1 Option data and delta-hedged option return

The data on equity options are from the OptionMetrics Ivy DB database. The dataset

contains information on the entire U.S. equity option market from January 1996 to August

2014. The data fields include daily closing bid and ask quotes, trading volume, open interest,

implied volatility and the option’s delta, gamma, vega, theta, and rho. The implied volatility

and greeks are computed using an algorithm based on the Cox et al. (1979) model. If the

option price is not available for any given day, we use the most recent valid price. We also
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obtain the risk free rate from OptionMetrics. Financial firms are excluded from the analysis

since conventional capital structure models cannot explain their financing decisions.

At the end of each month and for each optionable stock, we collect the call and put

options that are closest to being at-the-money and have the shortest maturity among those

with more than one month to expiration. We also apply the following filters to select the

options. First, to mitigate the problem of early exercise feature of American options, we

only include the options if the underlying stock does not pay dividends during the remaining

life of the option. Second, prices that violate arbitrage bounds are eliminated. Third, an

observations is eliminated if any of the following conditions apply: (i) the ask is lower than

or equal to the bid, (ii) the bid is equal to zero, (iii) the spread is lower than the minimum

tick size (equal to 0.05 for option trading below 3 and 0.10 in any other cases), or (iv) there

is no volume or open interest.

The delta-hedged option position is constructed by holding a long position in an option,

hedged by a short position of delta shares on the underlying stock. The definition of delta-

hedged option gain follows Bakshi and Kapadia (2003a) and is given by

Πt,t+τ = Ct+τ − Ct −
∫ t+τ

t
∆udSu −

∫ t+τ

t
ru(Cu −∆uSu)du

where Ct represents the price of an European call option at time t, ∆u = ∂Cu
∂St

is the option

delta at time u, and ru is the annualized risk-free rate at time u. Consider a portfolio of a

call option that is hedged discretely N times over the period [t, t + τ ], where the hedged is

rebalanced at each date tn, n = 0, 1, ...N − 1. As shown by Bakshi and Kapadia (2003a) in a

simulation setting, the use of the Black-Scholes hedge ratio has a negligible bias in calculating

delta-hedged gains. The discrete delta-hedged call option gain up to the maturity date t+ τ

is defined as

Πt,t+τ = max(St+τ −K, 0)− Ct

−
N−1∑
n=0

∆tn [Stn+1 − Stn ]−
N−1∑
n=0

rn(Ct −∆tnStn)
τ

N
. (14)

The definition for delta-hedged put option gain is similar to equation (14), except that
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the option price and delta are for the put option and the payoff of the put option is max(K−

St+τ , 0). To make the delta-hedged gains comparable across stocks, we scale the delta-hedged

call option gain Πt,t+τ by ∆tSt − Ct and by Pt −∆tSt for the put options. In section 4, we

refer to the scaled delta-hedged option gain Πt,t+τ/(∆tSt−Ct) as the delta-hedged call option

return.

Equation (13) shows that one determinant of the delta-hedged option gain is the volatility

of the underlying asset process. We estimate the asset volatility at the end of each month

using the iteration procedure based on Merton’s Model, following Vassalou and Xing (2004)

and Bharath and Shumway (2008).

3.2 Balance sheet data

Balance sheet data are obtained from Compustat database. Market (Book) leverage is calcu-

lated as the sum of total debt (data item: LTQ) and the par value of the preferred stock (data

item: PSTKQ), minus deferred taxes and investment tax credit (data item: TXDITCQ), di-

vided by market (book) equity. Fama and French (1992) suggests that size is a potential risk

factor, and it is reasonable to control size in the cross section of option returns. Firm size is

defined as the natural logarithm of the firm’s market equity. Book to market ratio is defined

as book equity divided by market equity.

Following Toft and Prucyk (1997), we use the maturity structure of the firm’s debt as a

proxy for the existence of net-worth hurdles, more specifically, the ratio of long-term debt due

in one year plus notes payable to total debt. Leland (1994) argues that short-term debt can

be associated with an exogenous bankruptcy trigger that equals the market value of debt.

Long-term debt results in an endogenous bankruptcy point which is below its exogenous

counterpart. Intuitively, this indicates that firms with a large proportion of debt due in the

immediate future must pass a net-worth hurdle. Otherwise, they are unable to roll over their

debt. Firms primarily financed by long-term debt need not overcome such a strict net-worth

hurdle.
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3.3 Control variables

The main control variables are idiosyncratic volatility, slope of the volatility term structure,

volatility deviation, size, book to market and bid-ask spread. Idiosyncratic volatility is defined

as the standard deviation of the error term of the Fama-French three-factor model estimated

using the daily stock returns over the previous month. The definition follows Ang et al. (2006)

and Cao and Han (2013). Volatility deviation is defined as the difference between historical

volatility over the previous year and at-the-money implied volatility, following Goyal and

Saretto (2009). Following Vasquez (Forthcoming), the slope of the volatility term structure is

defined as the difference between the average of at-the-money call and put implied volatilities

with 365 and 30 days to maturity. Christoffersen et al. (2014) document the illiquidity premia

in the equity option market. To control the effect of liquidity, we define the option illiquidity

measure as the relative bid-ask spread: (2(Obid − Oask)/(Obid + Oask), where Obid is the

highest closing bid price and Oask is the lowest closing ask price.

3.4 Summary statistics

After calculating the delta-hedged option returns, we merge the equity options data with their

underlying stock information and the balance sheet data. Table 1 shows that the means of

the delta-hedged options for call and put options are both −1.97% with a standard deviation

0.09. The average moneyness of the chosen options is 0.98 with a standard deviation of 0.03.

The detailed information for the delta-hedged option returns under the two categories are

presented in Table 1.

4 Cross sectional regression analysis

This section presents the results of Fama-French regression, tests several potential explana-

tion of the results and reports some robustness checks.

4.1 Delta-hedged option return and ex-post variance risk premium

In equation (11), we show that the delta-hedged option return is related to stock characteris-

tics because it captures the equity variance risk premium during the life of the option before
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expiration. Hence, in the first step, we test the relation between the two and examine how

much the delta-hedged option return can be explained by the equity variance risk premium,

both in the cross section and in the time series regressions. In the previous literature, the

ex-ante variance risk premium is often used to control for the variance risk embedded in the

delta-hedged option return. However, it is a solid proxy of variance risk only if the ex-ante

variance risk premium is a unbiased estimator of the ex-post variance risk premium. Different

from the previous literature, we examine how much the delta-hedged option return can be

explained by the ex-post variance risk premium accumulated during the holding period. As

is shown in equation (11), the option gamma affects the reflection of variance risk premium

in the delta-hedged option return. If the the level of the option gamma is too small and time

varying, it is likely that these options have little information about the nature of the variance

risk premium. Hence, we select options with gamma larger than 0.07.

Table 3 shows the regression results of cross-sectional and time-series regression. In the

cross-section regression, the average number of firms is 990 each month. In the time-series

regression, we select firms with more than 30 observations of delta-hedged option return. The

results shows that the ex-post variance risk premium and option gamma can explain around

21% of the variation of the delta-hedged option returns both in the cross section and in the

time series.

4.2 Leverage, asset volatility and delta-hedged option returns

We study the relation between leverage, asset volatility and delta-hedged option returns

using monthly Fama-Macbeth regressions. In Table 4, we show the benchmark regression

results with market leverage and book leverage. The delta-hedged gain is scaled by initial

stock price in Panel A and scaled by the initial capital of the delta-hedged option portfolio

in Panel B. First, the result confirms the endogenous issue of the leverage variable in Molina

(2005) and Choi and Richardson (2016). The market leverage has no significant impact on

the delta-hedged option return in the univariate Fama-French regression. However, after

controlling for the underlying risk of the firm measured by asset volatility, we identify a

significantly negative relation between market leverage and delta-hedged option return with

average t statistics −4.25 and −3.81. Second, consistent with the discussion in Proposition
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3, we find a weaker relation for the book leverage. Third, the coefficients of market leverage

are significantly negative whether we scale the delta-hedged gain by initial stock price or by

initial capital. The average t statistics is slightly higher when it is scaled by initial stock

price, consistent with the discussion in Section 2.3. In the following analysis, we focus on

the role of market leverage in determining the cross sectional variation of the delta-hedged

option return. To be comparable with the results in the previous literature such as in Goyal

and Saretto (2009) and Cao and Han (2013), we use the delta-hedged option return scaled

by the initial capital in the following tables.

Table 5 shows that both leverage and asset volatility are significantly negative and robust

in all specifications, consistent with the implications in the model. In model (2) to (8), we

control for the variables that can predict future delta-hedged option return in the litera-

ture: idiosyncratic volatility (Cao and Han (2013)), the slope of the volatility term structure

(Vasquez (Forthcoming)), the log difference of realized and implied volatility (Goyal and

Saretto (2009)), size and market to book ratio (Cao et al. (2016)), and the bid-ask spread

((Christoffersen et al., 2014)). The coefficients of leverage and asset volatility are still statis-

tically significant and stable after controlling for these variables, showing that the relation

cannot be explained by the the limits to arbitrage, market imperfections, volatility-related

mispricing or liquidity.

Equation (12) in Section 2.3 suggest that the relation between leverage and delta-hedged

option gain can be alternatively identified by using the delta hedged option return scaling

by the square of asset volatility. Table 6 shows the regression results for delta-hedged option

return divided by the square of asset volatility. We find that leverage is significantly negative

in all specifications without controlling asset volatility. The results in Table 5 and Table 6

also show that the market leverage and asset volatility are not able to explain the anomalies

documented in the literature in a linear model.

4.3 Debt maturity and delta-hedged option returns

As suggested in Section 2.3, debt maturity is positively related to the delta-hedged option

return. This means that firms with the shorter debt maturity have more negative the delta-

hedged option return, other things equal. In other words, firms with more short term debt
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scaled by the total debt should have more negative delta-hedged option return after con-

trolling for market leverage and asset volatility. We, therefore, use the ratio of long-term

debt due in one year to total debt as the short term debt ratio (CVNT1) and the ratio of

long-term debt due within five years to total debt as the long-term debt ratio (CVNT5).

The effect of debt maturity is similar as the covenant effect studied in Toft and Prucyk

(1997), in which the maturity structure of the firm’s debt is used as a proxy for the existence

of net-worth hurdles. Leland (1994) argues that short-term debt can be associated with an

exogenous bankruptcy trigger that equals the market value of debt on the issue date. Long-

term debt, on the other hand, should have a smaller effect compared to the short-term debt.

Intuitively, this indicates that firms with a large proportion of debt due in the immediate

future must pass a net-worth hurdle. Otherwise they are unable to roll over their debt.

Table 7 reports the results of regressing the delta-hedged option return on the short

term debt ratio and long term debt ratio (CVNT1 and CVNT5). First, we find that, in the

different specifications, the estimated coefficient of both short term debt ratio and long term

debt ratio are significantly less than zero after controlling for leverage and asset volatility.

The estimated coefficients range from −0.011 to −0.028 and the t statistics range from −2.28

to −9.60.

Second, short-term debt ratio (CVNT1) has a larger effect on the delta-hedged option

returns than the longer-term debt ratio (CVNT5). This pattern shows in all four samples,

for instance, the estimated coefficient of cvnt1 (−0.028) is twice as large as that of cvnt5

(−0.014). This can be explained that long term debt due in the nearer future places a more

strict net-worth covenant than that due in the further future. Thus, for firms with a similar

leverage ratio and other characteristics, the effect of cvnt1 on delta-hedged option returns

is larger than that of cvnt5. Overall, the results present in Table 7 support the hypothesis

predicted in the theoretical model.

5 Leverage-based trading strategy

We now investigate the cross-sectional relation between delta-hedged option returns using

portfolio sorting approach. This section proposes a leverage-based trading strategy and
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confirms the Fama-Macbeth regression results in the previous section.

5.1 Single sort portfolio

At the end of each month, we sort stocks with traded options into five quintiles based on

their market leverage ratio. We then construct the delta-hedged option portfolio on the first

trading day of the next month. Using the insights in the results of Table 6 and the discussion

in Section 4.2, we scale the delta-hedged option return by the square of asset volatility times

10. Table 8 shows the average return of the portfolios for the five quintiles and the return of

the difference in the fifth and the first quintile. We present results for equally weighted, open

interest weighted and value weighted portfolio returns sorting on market leverage and book

leverage. For all six specifications, the difference between the fifth and the first portfolio is

always significantly negative. This table confirms that after scaling for asset volatility, the

higher the leverage ratio, the more negative the delta-hedged option return.

5.2 Exposure of the long-short portfolio to the common factors

Table 9 examines how the return of our long-short leverage-based option strategy can be ex-

plained by the systematic volatility risk factors and higher-order market factors. We regress

the time series of equal-weighted monthly returns of our market leverage-based option strat-

egy on several systematic volatility riskfactors. The first is the delta-hedged option return

of S& P500 index scaling by its implied variance times 10 (DHMKT),which proxies for the

market variance risk (e.g., Coval and Shumway (2001); Bakshi and Kapadia (2003a)). The

second is the market return minus risk free rate (MKTRF). The third to fifth factors are

Fama-French three factors: SMB, HML and UMD. The remaining factors are higher order

risk factors based on DHMKT and MKTRF.

The partial equilibrium capital structure model in our paper implies that the relation

between firm leverage and delta-hedged option return is theoretically explained by firm’s

exposure to the common risk factors. Hence, the relation documented in our paper should

not be considered as a new anomaly. We expect that the return of the long-short leverage

portfolio is positively related to the market risk factors. Table 9 shows that the return of

the long-short portfolio is significantly related to the market delta-hedged option return with
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estimated coefficients ranging from 0.385 to 0.707 in different specifications. The long-short

return is in general not exposed to SMB, HML and UMD. The square of DHMKT, the cube

of DHMKT and the square of MKTRF are significant in some of the specifications, which

means that the long-short return exposes to higher order risk factors. Meanwhile, we should

recognize that the alpha of the models are significant in all specifications. Hence, the market

factors can only explain part of the time series variation of the long-short portfolio return,

which might be due to the non-linearity of the portfolio return caused by leverage.

5.3 Double sort portfolios

In Table 6, we use Fama-Macbeth regressions to show that the negative relation between

delta-hedged option return and leverage ratio is robust after controlling for anomalies sug-

gested in the literature. Table 10 uses the double sort to confirm the regression result. At

the end of each month, we first sort the stocks into five quintiles by the stock characteristics

such as idiosyncratic volatility, slope of volatility term structure, volatility deviation and

size. Within each quintile, the stocks are further sorted into five quintiles by their market

leverage. Similar as in Table 6, the delta-hedged option return is scaled by the square of asset

volatility times 10. We find that the effect of leverage is significant for 4 out of 5 quintiles

sorted by idiosyncratic volatility and for 3 out of 5 quintiles sorted by slope of volatility term

structure. The return difference between the fifth and first portfolio is larger for stocks with

smaller volatility deviation. Since volatility deviation is a measure of investor overreaction

in Goyal and Saretto (2009), this finding is consistent with the rational model in our paper.

We also find that the return difference is much larger and more significant for smaller firms.

The explanation is that leverage is a better measure of firm risk for smaller firms than larger

firms.

Table 11 reports the average returns of delta-hedged options on stocks of different leverage

levels after controlling for different characteristics. At the end of each month, the optionable

stocks are first sorted into five quintiles based on the the firm characteristics, and then

within each quintile, they are further sorted into five quintiles by leverage ratio. The leverage

portfolios are averaged over each of the five characteristic portfolios. Results show that the

returns of the long short leverage-based portfolio after controlling for idiosyncratic volatility,
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the slope of the volatility term structure, size and liquidity are statistically significant at 1%.

The monthly return ranges from −2.66% to −3.19%.

6 Conclusion

This paper argues in a capital structure model that, firm’s leverage ratio and asset volatility

are two important determinants of the expected return of delta-hedged equity options. We

first derive the expected return of the delta-hedged equity option based on a stylized capital

structure model, in which the asset value of a firm is driven by a jump-diffusion process. In

the model, the expected return of the delta-hedged equity option is closely linked to firm

characteristics such as leverage, asset volatility and debt maturity through the channel of

variance risk premium. Empirically we find that the ex-post variance risk premium can

explain a large portion of the cross sectional and time series variation of the delta-hedged

option return. We also find that leverage and asset volatility are significantly related to the

delta-hedged option return in different specifications. The results are robust after controlling

for anomalies variables documented in the literature, such as idiosyncratic volatility, the log

difference between realized volatility and implied volatility, the slope of the volatility term

structure and liquidity. Meanwhile, the anomalies cannot be explained by firm leverage and

asset volatility in the linear Fama-Macbeth regression.

However, we show that the predictability of some firm characteristics documented in Goyal

and Saretto (2009), Cao and Han (2013) and Cao et al. (2016) can be partially explained after

we “de-lever” the delta-hedged option return in a way suggested in the model. Specifically,

if we scale the delta-hedged option portfolio gain by the square of asset beta times square

of stock price times option gamma, the predictability of anomalies variables become much

weaker or even not significant.

Overall, this paper explores one channel, i.e. financial decision of the firm, that differen-

tiates the pricing of variance risk premium of individual stocks. The model indicates that the

first-order equity risk can transfer directly to higher-order risks such as the variance risk and

jump risk. The empirical evidence is in general consistent with the model. The implications

of the model helps us understand the cross sectional variation of the delta-hedged equity
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option returns.
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A Appendix

A.1 Proof of Proposition 1: the expression of expected delta-hedged gain

The first part in equation (9) can be expanded into the first two terms in the Taylor expansion

as an approximation:

EQ[O(S)−O(S−)] ≈ EQ[
∂O

∂S
(S − S−) +

1

2

∂2O

∂S2
(S − S−)2]. (15)

Similarly, under the physical measure, we approximate the expected change of the option

price until the second order:

E[O(S)−O(S−)] ≈ E[
∂O

∂S
(S − S−) +

1

2

∂2O

∂S2
(S − S−)2]. (16)

Substituting equation (15) and (16) into equation (9), we get equation (10) in Proposition

1. Using Taylor expansion, the change of stock price in jump times can be further expanded.

The quadratic term in equation (1) is approximately equal to,

(S(V )− S(V−))2 ≈ (
∂S

∂V
(V − V−) +

1

2

∂2S

∂V 2
(V − V−)2)2. (17)

There is quadratic, cubic and quartic terms in the above formula. Since higher order terms

play a less important role, we only consider the first order term such that equation (10) is

simplified as

E(Πt) ≈
∫ t

0

1

2

∂2Ou
∂S2

u

(
∂Su
∂Vu

)2(λE[Vu − Vu−]2 − λQEQ[Vu − Vu−]2)du

=

∫ t

0

1

2

∂2Ou
∂S2

u

(
∂Su
∂Vu

)2(Vu−)2(λE[J − 1]2 − λQEQ[J − 1]2)du (18)

Note that the option price is a strictly convex function of the underlying asset price

and that the option gamma ∂2O
∂S2 is positive for both call and put options. ∂S

∂V is also positive

because the stock price S is a call option on the firm’s asset V . Recall that the total variances
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of the asset return under the physical and risk neutral measure are:

(σPv )2 = σ2 + λE[J − 1]2

(σQv )2 = σ2 + λQEQ[J − 1]2 (19)

The expected delta-hedged gain can be rewritten as:

E(Πt) ≈
∫ t

0

1

2

∂2Ou
∂S2

u

(
∂Su
∂Vu

)2(Vu−)2((σPv )2 − (σQv )2)du (20)

=

∫ t

0

1

2

∂2Ou
∂S2

u

β2
v ((σPv )2 − (σQv )2)S2

udu (21)

where βv = ∂Su
∂Vu

Vu
Su

Next, we derive the relation between E(Πt) and the variance risk premium over the time

period 0 to t. The variance of log(St) is measured by its quadratic variation (QV). For a

period from time 0 to t, it is given by,

[log(S), log(S)](0,t] =

∫ t

0
(
∂Ss
∂Vs

Vs
Ss
σ)2ds+

∑
0<s≤t

(
Ss − Ss−

Ss
)2. (22)

The randomness in QV generates variance risk. As the randomness in this model comes from

the jumps in the stock price, only the jump part contributes to the variance risk premium.

The variance risk premium (VRP) of the stock is defined as the wedge between the expected

quadratic variation under the physical measure and the risk neutral measure. Thus, the VRP

over the time period (0, t] is,

V RP = EP [[log(S), log(S)](0,t]]− EQ[[log(S), log(S)](0,t]] (23)

≈
∫ t

0
(

1

Su
)2(

∂Su
∂Vu

)2(λE[Vu − Vu−]2 − λQEQ[Vu − Vu−]2)du

=

∫ t

0
(
Vu
Su

)2(
∂Su
∂Vu

)2(λE[Ju − 1]2 − λQEQ[J − 1]2)du

The second step uses the Taylor expansion in equation (17). If we ignore the movement in

29



the stock price S, the variance risk premium is related to the delta-hedged option return by:

E(Πt) =

∫ t

0

1

2

∂2Ou
∂S2

u

dV RP

dt
S2
udu. (24)

A.2 Implication of the asset process with stochastic volatility

In this section, we include stochastic volatility in the asset process of the firm. We show that

the stochastic volatility in the asset process does not generate any additional excess gain on

the delta-hedged equity option portfolio.

We consider a firm with asset value Vt that follows a stochastic volatility process under

the physical measure,

dVt
Vt

= µdt+
√
νtdW1t, (25)

dνt = κ(θ − νt)dt+ σ
√
νtdW2t (26)

The volatility of the asset return, ν, is driving by a diffusion process dW2t that is correlated

with dW1t with constant correlation coefficient ρ. In the following derivation, we omit the

subscript t in the notation.

If we consider equity of the firm as an option written on the firm’s asset, then the equity

value of the firm S is a function of V . By Ito’s formula, we obtain

dSt =
∂S

∂t
dt+

∂S

∂V
dV +

∂S

∂ν
dν +

1

2

∂2S

∂V 2
dV dV +

1

2

∂2S

∂ν2
dνdν +

∂S

∂V ∂ν
dV dν

=
∂S

∂V
dV +

∂S

∂ν
dν + (

∂S

∂t
+

1

2

∂2S

∂V 2
νV 2 +

1

2

∂2S

∂ν2
σ2ν +

∂S

∂V ∂ν
σνρ)dt.

Hence, there are two randomnesses that affect the movement of the equity price: the firm’s

asset V and the asset volatility ν. If S and V are both tradable and if we use ∂S
∂V portion

of the firm asset V to hedge the position of S, the risk of dν cannot be completely hedged

away. Hence, according to ICAPM, if dν is related to the change of the future investment

opportunities, investors who bear the risk of dν require the compensation of this volatility

risk, the variance.

Next, consider an option written on the equity of a firm. The price of the option at time
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t is denoted as Ot. Using Ito’s lemma we get

dO =
∂O

∂S
dS +

∂O

∂t
dt+

1

2

∂2O

∂S2
dSdS

=
∂O

∂S
(
∂S

∂V
dV +

∂S

∂ν
dν) + µodt

where µodt is the drift term, and µo is expressed by

µo =
∂O

∂S
(
∂S

∂t
+

1

2

∂2S

∂V 2
νV 2 +

1

2

∂2S

∂ν2
σ2ν +

∂S

∂V ∂ν
σνρ) +

∂O

∂t
]dt+

1

2

∂2O

∂S2
((
∂S

∂V
)2νV 2 + (

∂S

∂ν
)2σ2ν)

It can be further derived that

E[dO − ∂O

∂S
dS] = 0

From the above expression, we observe that the option position can be completely hedged

by taking ∂O
∂S of the underlying equity. The term of dν does not show up because the volatility

risk of the firm’s asset has been take into account in the equity price. By taking the stock

position, we hedge the asset risk (dV ) and the volatility risk (dν) of the firm’s asset indirectly.

Since all the risk sources have been hedged away, there is no compensation demanded by the

investors who take the delta-hedged equity option position.

We conclude that the expected return of the delta-hedged equity option position is zero

under the capital structure model with stochastic asset volatility. It is not compatible with

the empirical evidence that the return of the delta-hedged equity option position is on average

negative. Hence, we focus on the capital structure model with jumps in this paper.
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Table 1: Summary statistics of option data

Variable Mean
Std.
Dev.

10th
Pctl

25th
Pctl Median

75th
Pctl

90th
Pctl

Panel A: Call options

Delta-hedged return until maturity(%) -1.97 9.28 -9.31 -5.18 -2.03 0.52 4.40
Moneyness=S/K 0.98 0.03 0.94 0.96 0.98 1.00 1.01
Days to maturity 30.96 2.47 26 30 32 33 33
Relative bid-ask spread 0.21 0.20 0.05 0.09 0.15 0.26 0.43
Implied volatility (IV) 0.47 0.24 0.23 0.30 0.42 0.58 0.79
Delta 0.46 0.11 0.30 0.38 0.47 0.54 0.59

Panel B: Put options

Delta-hedged return until maturity(%) -1.97 7.91 -8.28 -4.70 -2.05 0.04 3.29
Moneyness=S/K 1.02 0.03 0.99 1.00 1.02 1.05 1.06
Days to maturity 30.89 2.49 26 30 32 33 33
Relative bid-ask spread 0.19 0.18 0.05 0.08 0.14 0.24 0.40
Implied volatility (IV) 0.49 0.25 0.24 0.31 0.43 0.60 0.81
Delta -0.40 0.10 -0.53 -0.47 -0.40 -0.32 -0.26

Panel C: Other variables

Book leverage 0.48 0.24 0.16 0.29 0.48 0.64 0.83
Market leverage 0.34 0.25 0.05 0.13 0.29 0.50 0.73
Asset Vol 0.38 0.25 0.16 0.22 0.32 0.47 0.68
Size=log(asset value) 7.64 2.02 5.14 6.18 7.52 8.96 10.33
Long term debt due in one year 0.03 0.09 0.00 0.00 0.00 0.03 0.08
Long term debt due in five years 0.17 0.26 0.00 0.00 0.10 0.26 0.47
Idiosyncratic volatility (Idio Vol) 0.38 0.28 0.14 0.20 0.31 0.48 0.71
Realized volatility 0.43 0.29 0.18 0.25 0.36 0.53 0.77
Ex-post VRP 0.003 0.455 -0.191 -0.091 -0.030 0.022 0.171
Vol Deviation -0.03 2.79 -0.20 -0.04 0.02 0.07 0.17
VTS Slope -0.02 0.07 -0.08 -0.04 -0.01 0.01 0.03
IV slope 0.01 0.07 -0.03 -0.01 0.01 0.02 0.05
RN skew -0.69 13.93 -0.82 -0.59 -0.38 -0.18 0.01
RNJump Right 0.25 0.30 0.02 0.06 0.14 0.31 0.60
RNJump Left 0.24 0.27 0.04 0.07 0.15 0.30 0.56

This table reports descriptive statistics of delta-hedged option returns for the pooled data. The
data sample period is from January 1996 to August 2014. For call (put) options, delta-hedged
return until maturity is calculated as delta-hedged gain scaled by ∆S − C (P −∆S). Moneyness
is the stock price over the strike price. Relative bid-ask spread is the difference between bid and
ask option price divided by the average of bid and ask price. Implied volatility (IV), delta and
vega are provided by OptionMetrics based on the Black-Scholes model. Book leverage is the sum
of total debt and the par value of the preferred stock, minus deferred taxes and investment tax
credit, divided by total asset. Size is the logarithm of the firm’s market value. Asset volatility
is calculated using the methodology in Vassalou and Xing (2004). Idiosyncratic volatility (Idio
Vol) is the standard deviation of the residuals of Fama-French three factor model estimated using
the daily return over the previous month. Ex-post VRP is the variance risk premium during the
life of the option. Vol Deviation is the difference between historical realized volatility and at-the-
money implied volatility. The other variables include VTS Slope is the slope of the volatility term
structure as in Vasquez (Forthcoming), IV slope is the implied volatility of the smile as in Yan
(2011), RN skew is the risk neutral skewness as in Bakshi et al. (2003), and the right-tail and
left-tail risk neutral jumps as defined in Bollerslev and Todorov (2011).
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Table 3: Delta-hedged option return and ex-post variance risk premium

Cross-section Time-series

Intercept -0.022*** -0.017*** -0.020*** -0.017***
(-11.76) (-8.13) (-48.64) (-14.66)

ex-post VRP 0.126*** 0.126*** 0.162*** 0.162***
(21.04) (21.02) (49.4) (49.08)

Gamma -0.028*** -0.021***
(-4.05) (-2.88)

Average adj. R2 0.210 0.211 0.203 0.206

Note: This table shows the regression results for cross-sectional and time series regression of
delta-hedged option return and ex-post variance risk premium. In the cross-section regression,
the average number of firms is 990 for each month. In the time-series regression, we select firms
with more than 30 observations of delta-hedged option return.
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Table 4: Leverage, asset volatility and delta-hedged option return

Panel A: Delta-hedged gain scaled by initial stock price

Intercept -0.005 0.000 0.003 Intercept -0.007 0.000 0.001
(-5.36) (-0.39) -3.56 (-6.91) (-0.39) -0.64

ML 0.000 -0.006 BL 0.003 -0.001
(0.16) (-4.25) (2.89) (-1.50)

Asset Vol -0.014 -0.017 Asset Vol -0.014 -0.015
(-10.40) (-12.13) (-10.40 (-10.56)

Adjusted R2 0.005 0.012 0.018 Adjusted R2 0.003 0.012 0.014

Panel B: Delta-hedged gain scaled by initial capital

Intercept -0.013 -0.002 0.006 Intercept -0.016 -0.002 0.000
(-6.41) (-0.91) (3.53) (-7.63) (-0.91) -0.23

ML 0.000 -0.013 BL 0.006 -0.003
(0.10) (-3.81) (2.94) (-1.47)

Asset Vol -0.03 -0.037 Asset Vol -0.03 -0.031
(-10.74) (-12.38) (-10.74) (-10.86)

Adjusted R2 0.006 0.016 0.023 Adjusted R2 0.003 0.016 0.017

This table reports the average coefficients (t-statistics) from monthly cross-sectional Fama-
MacBeth regressions of delta-hedged call option returns. The sample period covers data from
January 1996 through August 2014. Asset volatility is estimated based on Merton model follow-
ing Vassalou and Xing (2004). ML is market leverage and BL is book leverage. The delta-hedged
gain is scaled by initial stock price in Panel A and scaled by initial capital in Panel B. Reported are
the coefficients and Fama-MacBeth t-statistics with Newey-West correction for serial correlation.
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Table 5: Leverage, asset volatility, and delta-hedged option return with control variables

name (1) (2) (3) (4) (5) (6) (7) (8)

Intercept 0.006 0.010 0.006 0.008 -0.102 0.008 0.011 -0.044
(3.53) (5.61) (3.26) (4.94) (-13.69) (4.32) (6.18) (-7.21)

Leverage -0.013 -0.012 -0.012 -0.013 -0.007 -0.007 -0.010 -0.004
(-3.81) (-3.56) (-3.55) (-4.33) (-2.59) (-2.95) (-3.07) (-1.78)

Asset Vol -0.037 -0.022 -0.033 -0.038 -0.015 -0.037 -0.036 -0.005
(-12.38) (-8.86) (-11.49) (-13.53) (-5.83) (-12.31) (-12.41) (-2.41)

Idio vol -0.468 -0.673
(-13.34) (-16.74)

VTS slope 0.093 0.038
(10.91) (5.12)

Vol dev 0.015 0.027
(7.72) (13.24)

Size 0.007 0.004
(13.53) (9.67)

B2M -0.009 0.000
(-6.41) (0.92)

Bid-Ask Spread -0.038 -0.026
(-11.27) (-9.96)

Adjusted R2 0.023 0.031 0.034 0.029 0.043 0.027 0.039 0.076

This table reports the average coefficients (t-statistics) from monthly cross-sectional Fama-
MacBeth regressions of delta-hedged call option returns. The sample period covers data from
January 1996 through August 2014. Leverage is the sum of total debt and the par value of the
preferred stock, minus deferred taxes and investment tax credit, divided by the firm’s market value.
Asset volatility is estimated following Vassalou and Xing (2004). Idiosyncratic volatility (Idio vol)
is the standard deviation of the residuals of Fama-French three factor model estimated using the
daily return over the previous month. Vol deviation is calculated as the difference between real-
ized volatility and implied volatility. VTS slope is the slope of the volatility term structure as
in Vasquez (Forthcoming). Size is the logarithm of the firm’s market capitalization. B2M is the
book to market ratio. Bid-ask Spread is the difference between bid and ask prices divided by the
average of the bid and ask prices. Reported are the coefficients and Fama-MacBeth t-statistics
with Newey-West correction for serial correlation.
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Table 6: Leverage and the delta-hedged option return scaled by asset volatility

name (1) (2) (3) (4) (5) (6) (7) (8)

Intercept 0.007 0.014 0.009 0.011 -0.074 0.010 0.016 0.042
(1.63) (2.81) (2.28) (2.66) (-1.67) (2.26) (3.45) (0.67)

Leverage -0.050 -0.052 -0.049 -0.049 -0.051 -0.041 -0.045 -0.043
(-2.85) (-2.95) (-2.73) (-2.84) (-2.98) (-2.33) (-2.57) (-2.46)

Idio Vol -0.335 -0.863
(-3.33) (-3.71)

VTS slope 0.167 0.102
(5.28) (3.52)

Vol dev 0.031 0.049
(4.71) (5.16)

Size 0.005 0.000
(1.87) (0.04)

B2M -0.013 -0.009
(-2.90) (-1.95)

Bid ask spread -0.067 -0.069
(-5.13) (-3.86)

Adjusted R2 0.008 0.008 0.008 0.008 0.013 0.009 0.010 0.019

This table reports the average coefficients (t-statistics) from monthly cross-sectional Fama-
MacBeth regressions of the scaled delta-hedged call option returns. The delta-hedged option
return is scaled by the square of asset volatility times 10. The sample period covers data from
January 1996 through August 2014. Leverage is the sum of total debt and the par value of the pre-
ferred stock, minus deferred taxes and investment tax credit, divided by the firm’s market value.
Asset volatility is estimated following Vassalou and Xing (2004). Idiosyncratic volatility (Idio
vol) is the standard deviation of the residuals of Fama-French three factor model estimated using
the daily return over the previous month. Vol deviation is calculated as the difference between
realized volatility and implied volatility. VTS slope is the slope of the volatility term structure as
in Vasquez (Forthcoming). Size is the logarithm of the firm’s market capitalization. B2M is the
book to market ratio. Bid-ask Spread is the difference between bid and ask prices divided by the
average of the bid and ask prices. Reported are the coefficients and Fama-MacBeth t-statistics
with Newey-West correction for serial correlation.
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Table 7: Debt maturity and delta-hedged option return return

(1) (2) (3)

Intercept 0.011 0.013 0.013
(6.38) (7.13) (7.22)

Leverage -0.021 -0.020 -0.020
(-6.18) (-6.10) (-6.13)

Asset Vol -0.040 -0.041 -0.041
(-12.43) (-12.42) (-12.50)

Short-term debt ratio (CVNT1) -0.028 -0.011
(-7.29) (-2.28)

Long-term debt ratio (CVNT5) -0.014 -0.012
(-9.60) (-7.38)

Adjusted R2 0.025 0.026 0.026

This table reports the average coefficients (Newey-West t-statistics) from monthly cross-sectional
Fama-MacBeth regressions of at-the-money delta-hedged call option returns. Short-term debt
ratio (CVNT1) is the ratio of long term debt due in one year divided by total long term debt.
Long-term debt ratio (CVNT5) is the ratio of long term debt due within five years divided by
total long term debt. The sample period covers data from January 1996 through August 2014.
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Table 8: Firm leverage and the cross-section of delta-hedged option returns

(a) Panel A: Market Leverage

1 2 3 4 5 5-1

Equal weight -0.0042 -0.0025 -0.0095 -0.0137 -0.0361 -0.0320***
(-3.63) (-0.93) (-3.94) (-1.93) (-3.26) (-3.01)

Open interest weight -0.0043 -0.0044 -0.0037 -0.0135 -0.0771 -0.0728***
(-3.64) (-2.75) (-0.85) (-4.41) (-5.41) (-5.21)

Value weight -0.0037 -0.0008 -0.0094 -0.0132 -0.0326 -0.0290**
(-2.83) (-0.23) (-3.42) (-1.49) (-2.73) (-2.50)

(b) Panel B: Book Leverage

1 2 3 4 5 5-1

Equal weight -0.0068 -0.0075 -0.0097 -0.0109 -0.0302 -0.0234***
(-7.06) (-2.41) (-2.82) (-1.39) (-3.23) (-2.66)

Open interest weight -0.0069 -0.0054 -0.0058 -0.026 -0.0577 -0.0508***
(-6.54) (-2.61) (-1.09) (-2.50) (-5.07) (-4.59)

Value weight -0.0064 -0.0065 -0.0097 -0.0094 -0.0264 -0.0200**
(-6.33) (-1.67) (-2.46) (-1.00) (-2.65) (-2.13)

We scale the delta-hedged option gain by the square of the asset volatility times 10 and report
equal-, open-interest-, and value-weighted monthly scaled returns of quintile portfolios formed
from the leverage ratio. The last column displays the difference between quintile 5 and quintile
1. In parentheses we report the t-statistics. Panel A displays the results for market leverage and
Panel B for book leverage. The sample period for Optionmetrics stocks is January 1996 to August
2014.
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Table 9: Return of the long-short leverage portfolio and exposure to the common factors

1 2 3 4

Alpha -0.020 -0.040 -0.026 -0.035
(-2.49) (-3.98) (-3.15) (-2.77)

DHMKT 0.475 0.385 0.564 0.707
(2.70) (2.10) (2.49) (2.64)

MKTRF -0.293 -0.100
(-2.05) (-0.54)

SMB 0.198 0.222
(1.01) (1.12)

HML -0.221 -0.206
(-1.20) (-1.10)

UMD -0.055 -0.046
(-0.44) (-0.36)

DHMKT2 2.624 6.652
(1.29) (2.28)

MKTRF2 1.953 1.301
(2.11) (0.82)

MKTRF*DHMKT 1.017 6.226
(0.33) (1.25)

DHMKT3 -10.537 -38.027
(-0.83) (-1.91)

MKTRF3 -2.647 1.037
(-0.80) (0.16)

MKTRF*DHMKT2 15.992 28.576
(1.34) (1.45)

Adjusted R2 0.063 0.074 0.076 0.083

This table reports the regression results for different factor models. The dependent variable
is the return of the long-short (5-1) portfolio in Table 8. The independent variables are the
contemporaneous return of the delta-hedged SP 500 index option divided by the implied variance
times 10 (DHMKT ), the market return (MKTRF ), the Fama-French and momentum factors
(SMB, HML, and UMD). The sample period for Optionmetrics stocks is January 1996 to
August 2014.
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Table 10: Double sorting on firm characteristics and leverage

Panel A: Double sorting on idiosyncratic volatility and leverage
1-ML 2 3 4 5-ML 5-1

1-Idio Vol 0.0005 -0.0060 -0.0162 0.0000 -0.0230 -0.0235**
(0.16) (-1.04) (-2.46) (0.00) (-1.92) (-2.09)

2 -0.0018 -0.0028 -0.0069 -0.0195 -0.0401 -0.0383***
(-1.07) (-1.39) (-2.61) (-2.92) (-2.64) (-2.62)

3 -0.0026 -0.0076 -0.0069 -0.0145 -0.0457 -0.0432***
(-1.85) (-2.58) (-3.90) (-4.67) (-3.04) (-2.95)

4 -0.0044 -0.0048 0.0038 -0.0015 -0.0211 -0.0168
(-4.58) (-4.96) (0.34) (-0.12) (-1.42) (-1.13)

5-Idio Vol -0.0059 -0.0055 -0.0063 -0.0109 -0.0370 -0.0311***
(-8.22) (-6.80) (-6.79) (-5.38) (-3.30) (-2.83)

Panel B: Double sorting on slope of the volatility term structure and leverage
1-ML 2 3 4 5-ML 5-1

1-VTS slope -0.0057 -0.0065 -0.0037 -0.0224 -0.0789 -0.0732***
(-5.58) (-5.15) (-0.34) (-6.28) (-6.18) (-5.90)

2 -0.0022 -0.0080 -0.0065 -0.0041 -0.0217 -0.0195
(-1.61) (-2.50) (-3.21) (-0.31) (-1.08) (-0.98)

3 -0.0033 -0.0019 -0.0064 0.0023 -0.0331 -0.0298*
(-2.37) (-1.02) (-3.03) (0.19) (-2.05) (-1.89)

4 -0.0004 -0.0012 -0.0106 -0.0130 -0.0259 -0.0256**
(-0.25) (-0.65) (-1.75) (-1.84) (-2.33) (-2.37)

5 -0.0040 -0.0049 -0.0032 -0.0178 -0.0042 -0.0001
(-3.87) (-3.89) (-1.45) (-2.57) (-0.29) (-0.01)

Panel C: Double sorting on volatility deviation and leverage
1-ML 2 3 4 5-ML 5-1

1-Vol dev -0.0062 -0.0079 -0.0104 -0.0315 -0.0703 -0.0641***
(-3.88) (-4.12) (-4.63) (-4.00) (-6.93) (-6.11)

2 -0.0046 -0.0034 -0.0110 -0.0185 -0.0482 -0.0436***
(-3.85) (-2.13) (-2.00) (-3.12) (-3.45) (-3.19)

3 -0.0030 -0.0037 0.0068 -0.0116 -0.0135 -0.0105
(-2.66) (-2.12) (0.59) (-3.65) (-0.99) (-0.78)

4 -0.0021 -0.0056 -0.0063 -0.0032 -0.0114 -0.0093
(-1.58) (-2.09) (-3.16) (-0.27) (-0.55) (-0.46)

5-Vol dev -0.0023 -0.0016 -0.0029 0.0086 -0.0187 -0.0164
(-2.13) (-0.80) (-1.47) (0.65) (-1.35) (-1.21)

Panel D: Double sorting on size and leverage
1-ML 2 3 4 5-ML 5-1

1-Size -0.0103 -0.0098 -0.0118 -0.0156 -0.0529 -0.0426***
(-11.78) (-12.11) (-12.78) (-10.97) (-7.90) (-6.57)

2 -0.0065 -0.0079 -0.0121 -0.0148 -0.0466 -0.0401***
(-6.37) (-7.66) (-7.87) (-9.90) (-9.00) (-8.27)

3 -0.0051 -0.0071 -0.0109 -0.0154 -0.0284 -0.0233***
(-4.57) (-5.37) (-7.17) (-7.21) (-5.79) (-5.09)

4 0.0001 -0.0035 -0.0064 -0.0100 -0.0198 -0.0199*
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(0.07) (-2.03) (-1.55) (-3.76) (-1.62) (-1.66)
5 0.0036 0.0057 0.0127 -0.0063 -0.0205 -0.0241

(1.06) (1.87) (1.34) (-0.25) (-0.72) (-0.85)

This table reports the double sorting results of the average returns of delta-hedged options on
firm characteristics and leverage. At the end of each month, the optionable stocks are first sorted
into five quintiles based on the the firm characteristic, and then within each quintile, they are
further sorted into five quintiles by leverage ratio. Characteristics include idiosyncratic volatility
(Cao and Han (2013)), the slope of the volatility term structure (Vasquez (Forthcoming)), the
log difference of the realized volatility and implied volatility (Volatility deviation in Goyal and
Saretto (2009)), the log of capitalization (Size in Cao et al. (2016)). The t statistics are corrected
for serial correlation (Newey-West correction with 2 lags for monthly return). The sample dates
from January 1996 to August 2014.
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Table 11: Leverage, characteristics and the delta-hedged option return

1 2 3 4 5 5-1

Idio vol -0.0024 -0.0053 -0.0071 -0.0091 -0.0335 -0.0311***
(-1.73) (-2.59) (-2.37) (-1.58) (-3.76) (-3.78)

Vts slope -0.003 -0.0043 -0.0058 -0.0109 -0.0326 -0.0296***
(-3.18) (-3.13) (-1.99) (-1.97) (-3.48) (-3.34)

Vol dev -0.0037 -0.0044 -0.005 -0.0111 -0.0326 -0.0289***
(-4.08) (-3.21) (-1.76) (-1.99) (-3.52) (-3.28)

Size -0.0023 -0.0031 -0.0044 -0.0123 -0.0342 -0.0319***
(-1.54) (-2.19) (-1.61) (-2.08) (-3.77) (-3.64)

Bid ask -0.0045 -0.0053 -0.0051 -0.0111 -0.0312 -0.0266***
(-5.26) (-3.99) (-1.99) (-1.97) (-3.35) (-3.02)

This table reports the average returns of delta-hedged options on stocks of different leverage levels.
At the end of each month, the optionable stocks are first sorted into five quintiles based on the
the firm characteristic, and then within each quintile, they are further sorted into five quintiles by
leverage ratio. The leverage portfolios are averaged over each of the five characteristic portfolios.
Characteristics include idiosyncrativ volatility (Idio vol), the slope of the volatility term structure
(VTS slope), the log difference of the realized volatility and implied volatility (Vol dev), the
log of capitalization (Size), and the bid ask spread (Bid ask).The t statistics are corrected for
serial correlation (Newey-West correction with 2 lags for monthly return). The sample dates from
January 1996 to August 2014.
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