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ABSTRACT. Many economic applications, across an array of fields, use dynamic games to study
strategic interactions that are dynamic in nature. While these games will generically have large
sets of possible equilibria, Markov perfection (MPE) is the main criterion for selection in applied
work. Our paper experimentally examines this assumed selection across a number of simple dynamic
games. Starting from a two-state modification of the most studied static environment–the infinitely
repeated PD game—we work outward, characterizing the response to broad qualitative changes to
the game’s features. Subjects in our experiments show an affinity for conditional cooperation, readily
conditioning their behavior not only on the state but also the recent history of play. More-efficient
history-dependent play is the norm in many treatments, though the frequency of MPE-like play can
be predicted with a modification to an index developed for infinitely repeated games. A dynamic
extension of the basin of attraction is shown to have predictive power for the selection of MPE
outcomes.

1. INTRODUCTION

The trade-off between opportunistic behavior and cooperation is a central economic tension. In
settings where agents interact indefinitely theory shows it is possible to support efficient outcomes.
So long as all parties place enough weight on long-run benefits from sustained cooperation, threats
to condition future behavior on the present outcome are credible, and powerful enough to deter
opportunistic choices. This holds whether the strategic environment is fixed (a repeated game)
or evolving through time (a dynamic game). The set of subgame-perfect equilibria (SPE) is large,
with many equilibrium outcomes possible across a range of efficiency levels. For repeated games—
a special case within dynamic games—the experimental literature has documented a number of
patterns for behavior (see Dal Bó and Fréchette, 2014, for a survey). In comparison, much less
is known for the larger family of dynamic games. In this paper we expand outward from what
is already well-known, experimentally investigating how behavior in very simple dynamic games
responds to broadly read features of the environment.
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Dynamic games are frequently used in both theoretical and empirical applications, and the analy-
sis typically requires some criterion for equilibrium selection.1 In principle, just as with repeated
games, strategies can condition on the observed history of play. Such history-dependent strate-
gies can bootstrap cooperative outcomes in equilibrium, for example through trigger strategies that
cooperate conditional on no observed deviations, otherwise switching to an incentive-compatible
punishment phase. Yet the most-common solution concept in the dynamic-games literature pre-
cludes such history-dependence. Instead, the literature focuses the search for equilibria on those
strategies where agents condition their choices only on the present “state” of the game—where
each state in the dynamic game corresponds to a specific stage-game.2

Strategies that condition the selected action only on the present state are referred to as Markov
strategies. While analytically tractable, because Markov strategies are memoryless they cannot
punish based on observed deviations from the intended path of play. Typically, strategies that con-
dition on the larger history can sustain efficient outcomes in equilibrium, where Markov strategies
with their tighter conditioning can not. Where the emphasis in repeated games is on equilibria
that use past play to support efficient outcomes, the focus on Markov in more general dynamic
games ignores such conditioning—potentially ruling out efficient outcomes, even those support-
able through an SPE.

The available experimental evidence on behavior mirrors this rift. On the one side, a large exper-
imental literature on the infinite-horizon prisoner’s dilemma (PD) game documents a majority of
subjects using efficient, history-dependent strategies when the future discount rate is large enough
that these strategies are equilibria. On the other side, a nascent literature on infinite-horizon dy-
namic games suggests that behavior is consistent with the subset of SPEs where players do use
Markov strategies (Markov perfect equilibria, MPE).3 Our paper’s aim is to connect the experi-
mental literatures on infinitely repeated and dynamic games, and provide evidence to predict situ-
ations where the selection of MPE is more likely, and in which it is unlikely. A natural task then is
characterizing which properties of a dynamic game might lead to the selection of state-dependent

1A few examples of Dynamic Games across a number of fields: Industrial Organization (Maskin and Tirole, 1988;
Bajari et al., 2007), Labor Economics (Coles and Mortensen, 2011), Political Economy (Acemoglu and Robinson,
2001), Macroeconomics (Laibson, 1997), Public Finance (Battaglini and Coate, 2007), Environmental Economics
(Dutta and Radner, 2006), Economic Growth (Aghion et al., 2001) and Applied Theory (Rubinstein and Wolinsky,
1990; Bergemann and Valimaki, 2003; Hörner and Samuelson, 2009).
2Here we refer to the notion of Markov states, which are endogenously defined as a partition of the space of histories
(see Maskin and Tirole 2001 for details). The notion of Markov states is different from the notion of automaton states
(for example, a shirk state and a cooperative state in a prisoner’s dilemma). For a discussion on the distinction see
Mailath and Samuelson (2006), page 178.
3Battaglini et al. (2012) were the first to provide experimental evidence where the comparative statics are well or-
ganized by MPE. See Battaglini et al. (2014) and Salz and Vespa (2015) for further evidence. In Vespa (2015), the
choices of a majority of subjects can be rationalized using Markov strategies. For other experiments with infinite-
horizon dynamic games see Saijo et al. (2014) and Kloosterman (2015).
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behavior, and which to less-restrictive history dependence. Hence our paper’s subtitle: what is the
“conditional” in conditional cooperation, states or actions?

The experimental literature on dynamic games has primarily focused on rich dynamic environ-
ments, with many possible states. At the other extreme, the infinitely repeated PD is effectively
a degenerate dynamic game, with just a single state variable (and an MPE of joint-defection for-
ever). One simple characterization might be that behavior becomes Markovian as soon as the
state-space is non-degenerate. We will show this is not the case. In our core two-state environ-
ment, more-efficient SPE are the norm, where the path of play after miscoordinations identifies
history-dependent behavior. After showing this simple one/many distinction does not work to pre-
dict the majority of behavior and outcomes, we move on to isolate and modify other qualitative
features of our core game.

This core game—which we will call our “pivot”—extends the most-studied indefinitely repeated
game by adding a single additional state. In both of these states agents face a PD stage game.
However, the payoffs in the Low state are unambiguously worse than those in the High state, where
the best payoff in Low is smaller than the worst payoff in High. The game starts in Low and only if
both agents cooperate does it transition to High. Once in the High state the game transitions back
to Low only if both agents defect. This game has a unique symmetric MPE where agents cooperate
in Low and defect in High, but efficient outcomes that reach and stay in High can only be supported
with history-dependent strategies. Our modifications to this pivot involve eight between-subject
treatments, where each examines how a change to an isolated feature of the original game affects
behavior and the selection of strategies.

In the pivot (and many of our modified versions of it) we find that a majority of subjects seek to
support efficient outcomes with history-dependent choices, at comparable levels to those reported
for infinitely repeated PD games. This indicates a smoother transition over selection from infinitely
repeated to dynamic games—the mere presence of an additional state does not drive subjects to
ignore history and focus solely on the state. This is not say that Markov play is non-existent in
our data, and importantly, where we do observe it, it is consistent with theory. About one-fifth of
the choice sequences in our pivot are consistent with the MPE prediction, while the frequency of
non-equilibrium Markov play is negligible.

Our first set of manipulations alters the efficient frontier in the dynamic game, making a single
symmetric SPE more focal while holding constant the MPE prediction. Weakening the temptation
to defect in the high state, we make coordination on the best-case SPE easier, and our treatments
assess the degree to which behavior responds away from the MPE. A “static” manipulation alters
a single payoff at a single state (reducing the temptation payoff in the High state). A “dynamic”
manipulation alters the transition rule between states to make deviations from joint-cooperation
relatively less tempting (holding constant the pivot’s stage-game payoffs, we make it harder to

3



remain in High). In both manipulations the direction of the change in behavior is an increase in
the selection of efficient outcomes, with equilibrium Markov play becoming negligible. Quanti-
tatively, the effect is much stronger in the dynamic manipulation, where efficient play represents
approximately three-quarters of the observed data.

The second set of manipulations focuses on how one agent’s chosen action affects the other par-
ticipant, on the nature of the strategic externalities. In our pivot one subject’s current choices can
affect both the other’s current payoffs (a static externality) and the other’s future payoff (a dynamic
externality operating through the state’s transition). To what extent are each helping to support
history-dependent play?

We remove the pivot’s dynamic externality in two distinct ways. In the first, we make the transition
between the two states exogenous, but where both states are reached (stochastically) along the
game’s path. In the second, we remove the dynamics entirely, playing out each of the pivot’s two
stage-games as separate infinitely repeated games. In both manipulations, the only MPE involves
playing the stage-game Nash: unconditional joint defection. Relative to the pivot, we observe
substantially less cooperation in both treatments—thus, dynamic externalities are shown to be an
important selection factor for the supra-MPE behavior in the pivot. To remove static externalities
we require that each agent’s contemporaneous choice does not affect the other’s contemporaneous
payoff. We conduct two separate parametrizations, in which the broad structure of the equilibrium
set remains comparable to the pivot: the efficient actions are exactly the same (and stay in the
High state), while the most-efficient MPE still alternates between the Low and High states. In
both parametrizations we again find an increase in the frequency of equilibrium Markov play, and
a decrease in the frequency of history dependence. The presence of strong static externalities is
therefore also identified as an important factor in selection away from the MPE.

The final set of manipulations involves increases to the pivot game’s state-space. One argument
often informally made in favor of the Markov restriction is that when environments are “complex,”
agents may find it easier to use “simple” strategies. Here our manipulations increase the number
of possible states, while holding constant many elements from the pivot, to explore whether there
is a resulting increase in Markov play. Our first state-space manipulation is a perturbation, adding
small-scale, exogenous noise to the pivot’s payoffs. Each shock to the game is an independent draw
and its effect on the game is non-persistent, where only the Low/High component is endogenous.
Our findings for this treatment indicate that despite an order of magnitude increase in the state-
space’s size, behavior is similar to the pivot. If anything we observe an increase in the frequency
of cooperative play.

Our second state-space manipulation adds two endogenous states (each with their own particular
stage games) to the pivot. We term these states Very Low and Very High, and choose their stage
games so that the main structure of the pivot remains: the efficient and MPE outcomes do not
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change. We still find substantial use of history-dependent strategies. However, the treatment offers
a new rationale for why Markov behavior may emerge: strategic uncertainty. With more endoge-
nous states, there is greater variation in subjects’ play, and it takes longer for this uncertainty to be
realized. Our data reflects increased pessimism about others in this treatment, with more subjects
choosing to start the game by defecting. Coordinating on efficient cooperative outcomes becomes
more challenging, and greater rates of miscoordination lead to paths of play more consistent with
state-dependent equilibria of the game.

Taken together, our paper’s treatments lead to a number of summary conclusions: i) Having a
dynamic strategic environment does not necessarily lead to a prevalence of Markov play, where
many of the non-Markov strategies we observe aim for efficiency. ii) For those subjects who do use
Markov profiles, the MPE is focal. iii) Weakening the temptations to defect from efficient, history-
dependent play increase the selection of supra-MPE outcomes. iv) the presence of both static
and dynamic externalities affect coordination over history-dependent strategies, where removing
either type of strategic externality leads to a much greater selection of MPE behavior. v) Increased
complexity in the state-space does not on its own lead to MPE play becoming focal.

Clearly, the larger family of dynamic games is very rich, and our paper only looks at a small family
of games within it. Our aim is to begin documenting which broad features of the environment have
strong effects on behavior, so that eventually it might be possible to develop more-refined criteria
for equilibrium selection in dynamic games, as has happened within the larger repeated-games
literature. In the discussion section of the paper we expand on this, outlining some implications of
our findings for this larger research agenda. In particular, we show that a simple dynamic extension
of the basin of attraction used in the repeated-games literature has predictive power for the selection
of more-efficient outcomes than the MPE.

2. EXPERIMENTAL DESIGN AND METHODOLOGY

2.1. Dynamic Game Framework. A dynamic game here is defined as n players interacting
through their action choices at 2 A := A1 ⇥ · · · ⇥ An over a possibly infinite number of pe-
riods, indexed by t=1,2,. . . . Underlying the game is a payoff-relevant state ✓t 2 ⇥ evolving
according to a commonly known transition rule  : A ⇥ ⇥ ! �⇥, so that the state next round
is given by ✓t+1 =  (at, ✓t). The preferences for each player i are represented by a period payoff
ui : A⇥⇥ ! R, dependent on both the chosen action profile at and the current state of the game
✓t. Preferences over supergames are represented by the discounted sum (with parameter �):

(1) Vi ({at, ✓t}1t=1) =

1X

t=1

�t�1ui (at, ✓t) .
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Our main set of experiments will examine a number of very simple dynamic environments with an
infinite horizon: two players (1 and 2) engage in a symmetric environment with two possible states
(⇥ = {L(ow), H(igh)}) and two available actions, (Ai = {C(ooperate), D(efect)}). Any fewer
payoff-relevant states, it is an infinitely repeated game. Any fewer players, it is a dynamic decision
problem. Any fewer actions, it is uninteresting.

The state in the first period is given by ✓1 2 ⇥ and evolves according to the (possibly stochastic)
transition  (·). Given a stage game payoff of ui(a, ✓) for player i, symmetry of the game enforces
u1 ((a, a

0
) , ✓) = u2 ((a

0, a) , ✓) for all (a, a0) 2 A := A1 ⇥A2 and all states ✓ 2 ⇥.

2.2. Treatments. A treatment will be pinned down by the tuple � =< ⇥, ✓1, ui, > indicating
a set of possible states ⇥, a starting state ✓1, the stage-game payoffs ui(at, ✓t), and the transition
rule  (at, ✓t). All other components (the set of actions A and the discount parameter �) will be
common. In terms of organization, sections 3–6 will describe treatments and results sequentially.
After specifying and motivating each treatment, we provide more specific details with respect to
the theoretical predictions within each section. In particular, for each treatment we will focus on
characterizing symmetric Markov perfect equilibria (MPE, formally defined in the next section)
and providing examples of other SPE that can achieve efficient outcomes by conditioning on the
history of play.

2.3. Implementation of the infinite time horizon and session details. Before presenting treat-
ments and results, we first briefly note the main features of our experimental implementation. To
implement an indefinite horizon, we use a modification to a block design (cf. Fréchette and Yuksel
2013) that guarantees data collection for at least five periods within each supergame. The method,
which implements � = 0.75, works as follows: At the end of every period, a fair 100-sided die is
rolled, the result indicated by Zt. The first period T for which the number ZT > 75 is the final
payment period in the supergame.

However, subjects are not informed of the outcomes Z1 to Z5 until the end of period five. If all
of the drawn values are less than or equal to 75 the game continues into period six. If any one of
the drawn values is greater than 75, then the subjects’ payment for the supergame is the sum of
their period payoffs up to the first period T where ZT exceeds 75. In any period t � 6, the value

6



FIGURE 1. Summary of Treatment Design

Zt is revealed to subjects directly after the decisions have been made for period t.4 This method
implements the expected payoffs in (1) under risk neutrality.5

All subjects were recruited from the undergraduate student population at the University of Califor-
nia, Santa Barbara. After providing informed consent, they were given written and verbal instruc-
tions on the task and payoffs.6 Each session consists of 14 subjects, randomly and anonymously
matched together across 15 supergames. We conducted at least three sessions per treatment, where
each session lasted between 70 and 90 minutes, and participants received average payments of
$19.7

2.4. Overview of the design. In total we will document results from nine distinct treatments,
across three broad categories of manipulation: i) changing the efficient outcome to weaken the
temptation to defect from history-dependent cooperation (Section 4); ii) changing strategic exter-
nalities, how one agent’s choice affects the other’s payoffs (Section 5); and iii) changing the size

4This design is therefore a modification of the block design in Fréchette and Yuksel (2013), in which subjects learn
the outcomes Zt once the block of periods (five in our case) is over. We modify the method and use just one block
plus random termination in order to balance two competing forces. On the one hand we would like to observe longer
interactions, with a reasonable chance of several transitions between states. On the other, we would like to observe
more supergames within a fixed amount of time. Our design helps balance these two forces by guaranteeing at least five
choices within each supergame (each supergame is expected to have 5.95 choices). Fréchette and Yuksel (2013) show
that “block designs” like ours can lead to changes in behavior around the period when the information on {Zt}5t=1 is
revealed. However, such changes in behavior tend to disappear with experience and they show that this does not affect
comparative statistics across treatments.
5For payment we randomly select four of the fifteen supergames. Sherstyuk et al. (2013) compare alternative payment
schemes in infinitely repeated games in the laboratory. Under a ‘cumulative’ payment scheme similar to ours subjects
are paid for choices in all periods of every repetition, while under the ‘last period’ payment scheme subjects are paid
only for the last period of each supergame. While the latter is applicable under any attitudes towards risk, the former
requires risk neutrality. However, Sherstyuk et al. observe no significant difference in behavior conditional on chosen
payment scheme, concluding that it “suggests that risk aversion does not play a significant role in simple indefinitely
repeated experimental games that are repeated many times.”
6Instructions are provided in Appendix A. In the instructions we refer to periods as rounds and to supergames as cycles.
7One treatment has four sessions (En-DPD-CC with 56 subjects), where all others have three sessions (42 subjects).
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TABLE 1. Treatment Summary

Treatment |⇥| MPE Efficient IR action Transition Pr {✓1 = L}

L H L H L H L H

Pivot (Section 3):
En-DPD 2 C D (C,C) (C,D) D C (C,C) (D,D) 1

Change Efficiency (Section 4):
En-DPD-CC = = = = (C,C) = = = = =

En-DPD-HT = = = = (C,C) D D = not (C,C) =

Change Strategic Externalities (Section 5):
Ex-DPD = D D = = D D prob. 0.6 prob. 0.2 =

Ex-SPD 1 D D = = D D ; ; prob. 0.4
En-DCP-M = = = = = = = = = =

En-DCP-E = = = = = D D = = =

Change State-Space Complexity (Section 6:)
En-DPD-X 22 + + + + = = + + +
En-DPD-⇥̃ 4 + + + + = = + + =

Note: Where the table lists “=”, the relevant cell is identical to the En-DPD game’s value. For the En-DPD-X and En-DPD-⇥̃
treatments we list + to indicate similarity on the path, given a changed state-space. The Transition column indicates either the
action profile a that changes the state (so that  (a, ✓) 6= ✓) for deterministic transitions or the exogenous probability the state
changes given a random transition.

of the state-space (Section 6). In each manipulation we change a single feature of our pivot, en-
deavoring to hold other elements constant. Though we will provide more specific details as we
introduce each treatment, the reader can keep track of the full design and the differences across
treatments by consulting Figure 1 and Table 1.

Figure 1 shows how all nine treatments are organized around the pivot (labeled En-DPD), while
Table 1 summarizes the main differences in theoretical properties for each treatment, relative to the
pivot. The table provides: i) the size of the state-space; ii) the most-efficient symmetric MPE; iii)
the efficient action profile; iv) the action that obtains the individually rational payoff (by state); v)
the action profile/probability of transition to a different state; and vi) the starting state ✓1. However,
rather than presenting the entire global design all at once, we introduce each manipulation and its
results, in turn. The natural point to begin then is describing our pivot treatment, and outlining the
behavior we find within it, which we do in the next section.
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TABLE 2. En-DPD

✓=Low ✓=High
2: 2:

C D C D

1: C 100,100 30, 125 1: C 200, 200 130, 280
D 125, 30 60,60 D 280, 130 190, 190

3. PIVOT TREATMENT

3.1. Pivot Design (En-DPD). Our pivot game uses two PD stage games, one for each state, and so
we label it a dynamic prisoner’s dilemma (DPD). The transition between the two states is endoge-
nous (En-), with a deterministic relationship to the current state and player actions. We therefore
label the pivot treatment as “En-DPD.”

The precise stage-game payoffs ui(a, ✓) are given in Table 2 in US cents. The game starts in the
low state (✓1 = L), and the next period’s state ✓t+1 =  (at, ✓t) is determined by

 (a, ✓) =

8
>><

>>:

H if (a, ✓) = ((C,C) , L)

L if (a, ✓) = ((D,D) , H)

✓ otherwise.

This transition rule has a simple intuition: joint cooperation in the low state is required to shift the
game to the high state; once there, so long as both players don’t defect, the state remains in high.8

Examining the payoffs in each state, both stage games are clearly PD games: D is a dominant
strategy but (D,D) is not efficient. Each stage game therefore has a static strategic externality,
where the choice of player i in period t alters the period payoff for player j 6= i . However,
because the transition between states depends on the players’ actions the game also has a dynamic
externality. The choice of player i in period t affects future states and thus has a direct implication
for the continuation value of player j.

Theoretical Properties. Much of our paper will focus on symmetric Markov strategy profiles, a
function � : ⇥ ! Ai. Markov strategies only condition on the current state ✓t, ignoring other
components of the game’s history ht = {(as, ✓s)}t�1

s=1, in particular the previously chosen actions.
Given just two states, there are four possible pure Markov strategies available to each player in our

8An economic interpretation for this is that the state represents the stock of a good (fish in a pond, water in reservoir,
the negative of pollution levels, market demand) and the actions a choice over that stock (extraction of fish or water,
effluent from production, market supply). By cooperating in the low state, the stock can be built up to a socially-
desirable level. Once at the high state, the stock is more robust and only transitions back to low following more
systemic opportunistic behavior (joint defection).
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pivot game, an action choice �L 2 {C,D} for the low state, and �H 2 {C,D} for the high state.
We will use the notation M�L�H

to refer to the Markov strategy

�(✓) =

8
<

:
�L if ✓ = L,

�H if ✓ = H.

A symmetric pure-strategy Markov perfect equilibrium (MPE) is a profile (M�L�H
,M�L�H

) that is
also an SPE of the game. For our pivot there is a unique symmetric MPE, the strategy MCD: both
players cooperate in low, both defect in high. As such, the path of play for this MPE cycles between
the low and high states forever, and the discounted-average payoff is 4/7 · 100 + 3/7 · 190 ' 138.6.

Symmetric profiles that cooperate in the high state, either MCC or MDC , are not sub-game perfect.
A single player deviating in the high state increases their round payoff to 280 from 200, but the
deviation affects neither the state nor action choices in future periods, so the continuation value is
unchanged and the deviation is beneficial. Moreover, the strategy MDD that plays the stage-game
Nash in both states is also not an SPE. For any sub-game where the game is in high, this Markov
profile dictates that both agents jointly defect from this point onward, yielding the discounted-
average payoff 1

4 · 190 +
3
4 · 60 = 92.5. But the individually rational (IR) payoff in the high state

is 130, which each player can guarantee by cooperating in every period. So MDD is not an MPE.9

From the point of view of identifying Markov behavior, we chose the pivot game so that the equi-
librium strategy MCD has the following properties: i) the MPE path transits through both states;
ii) the strategy requires both that subjects do not condition on the history, but also that they select
different actions in different states, and is therefore more demanding than an unconditional choice
(for instance, MDD); and iii) more-efficient SPE are possible when we consider strategies that can
condition on history, as we discuss next.

Keeping the game in the high state is clearly socially efficient—payoffs for each player i satisfy
mina ui(a,H) > maxa ui(a, L). Joint cooperation in both states is one outcome with higher pay-
offs than the equilibrium MPE, achieving a discounted average payoff of 175. One simple form of
history-dependent strategy that can support this outcome in a symmetric SPE is a trigger. Players
cooperate in both states up until they observe an action profile at�1 6= (C,C), after which the trig-
ger is pulled and they switch to an incentive-compatible punishment. One way to make sure the
punishment is incentive compatible is to simply revert to the MPE strategy MCD as a punishment.

9Expanding to asymmetric MPE, there is an equilibrium where one agent uses MDC and the other MDD. If the
starting state were high, this asymmetric MPE can implement an efficient outcome where one agent selects C, the
other D, and thereby remain in high. However, since the initial state is low, this strategy will never move the game to
the high state, and as such implements the highly inefficient joint-defection in low forever outcome.
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We will refer to this symmetric history-dependent trigger strategy with an MCD punishment phase
as SCD.10

Though joint-cooperation is more efficient than the MPE, it is possible to achieve greater efficiency
still. The efficient path involves selecting C in the first period and any sequence of actions {at}1t=2

such that each at 2 {(C,D), (D,C)}. From period two onwards, efficient outcomes yield a total
period payoff for the two players of 410, where joint-cooperation forever yields 400.11 One simple
asymmetric outcome involves alternating forever between (C,D)/(D,C) in odd/even periods once
the game enters the high state. Such an outcome can be supported with an MCD-trigger after any
deviation from the intended path, where we will subsequently refer to this asymmetric trigger strat-
egy as ACD. The discounted-average payoff pair from the first period onwards is (170.7, 186.8),
so the player who cooperates first suffers a loss relative to joint-cooperation forever.

Though efficient outcomes are not attainable with symmetric SPE, or through any type of MPE,
every efficient outcome in En-DPD is supportable as an SPE for � = 0.75.12,13 In particular, be-
cause all efficient outcomes can be supported as SPE, both players can receive discounted-average
payoffs arbitrarily close to the first-best symmetric payoff of 178.75. As such, our pivot illus-
trates a tension not only between the best-case symmetric SPE and MPE, but also between what is
achievable with symmetric and asymmetric strategies.

3.2. Pivot Results. All results in all treatments in this paper are summarized by two figures and
a table positioned at the end of this paper.14 The two figures are designed to illustrate aggregate-
level behavior (Figure 3) and variation across supergames (Figure 4), while the table (Table 5)

10The symmetric profile (SCD, SCD) is an SPE for all values of � � 0.623, and so constitutes a symmetric SPE for
our pivot game at � = 0.75. Trigger-strategies where both players punish using MDD (which we call SDD) are not
sub-game perfect. However, jointly-cooperative outcomes can be sustained using an asymmetric Markov trigger. In
this modification, the player who deviates switches to MDC , while the player who was deviated upon switches to
MDD. That is, this strategy uses the asymmetric MPE described in footnote 9 and implements an punishment path of
permanent defection. This strategy is a symmetric SPE for all values of � � 0.534 (note that symmetry in action is
broken by the observed history, and so both players using this strategy is a symmetric SPE).
11We parametrize our pivot treatment with an asymmetric efficient outcome as this baseline will help when comparing
with the manipulations of the strategic externalities in Section 5. Section 4 will present two treatments where symmetry
is efficient; however the payoff difference between efficient and a symmetric solution is small, amounting to 5 cents
per player.
12Efficient paths must have both players cooperate with probability one in the initial low state and have zero probability
of either joint defection or joint cooperation in high. This rules out symmetric mixtures without a correlation device
(effectively putting a non-payoff relevant variable into the state-space).
13Every efficient supergame outcome {at}1t=1 in En-DPD is supportable as an SPE for � � 0.462. The bound on �
comes from the one-period deviation in period two and onwards for the following strategy: In period one, both agents
cooperate. In period two and beyond, one agent plays C, the other D, with a triggered (MDC ,MDD) punishment if
the game is ever in the low state in period 2 onward. All other efficient outcomes weaken the temptation to deviate.
14As we introduce treatments we will refer back to these three tables frequently. Readers are advised to either book-
mark the pages that contain them, or print out additional copies. More-detailed tables with formal statistical tests, the
most-common sequences of the state and action choices within supergames are given in the Online Appendix.
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provides estimates of the selection frequency for a number of key strategies. While more-detailed
regressions are included in the paper’s appendices, to simplify the paper’s exposition we will focus
on just these three main sources to discuss our results, with details in footnotes and the appendix.

The first source, Figure 3, presents the most-aggregated information on behavior, the average co-
operation rate by state, as well as some basic patterns for behavior within and across supergames.
The leftmost six bars present results for the En-DPD treatment. The first three gray bars indicate
the cooperation rate when the state is low, where the first, second and third bars show averages
for supergames 1–5, 6–10 and 11–15, respectively. The height of the bars indicate that the overall
cooperation rate in low is close to 75 percent, and is relatively constant as the sessions proceed
(albeit with a slight decrease in the last five supergames).

Similarly, the three white bars present the average cooperation rates for all periods in the high state,
again across each block of five supergames. The figure illustrates an average cooperation rate in the
high state of just under 70 percent in the first five supergames, falling to a little over 50 percent in
the last five supergames. These raw numbers suggest that a majority of choices are more-efficient
than the MPE prediction of no cooperation in high. More than this though, our data also suggests
that at least some subjects are not conditioning solely on the state, that the frequency of cooperation
at each state falls as the supergame proceeds. To illustrate this, Figure 3 displays cooperation rates
in the first (second) period of each supergame conditional on being in the low (high) state with gray
(white) circles. For comparison, the arrows on each bar show the cooperation rate in the last two
periods in each supergame (again, conditional on the relevant state). For En-DPD, the illustrated
pattern shows much higher initial cooperation levels in the low state, approaching 100 percent in
the last five supergames. However, the low-state cooperation rate near the end of the supergame is
much lower, closer to 50 percent.15

To further disaggregate behavior we move to Figure 4, where the unit of observation is the sequence
of choices made by each subject in each supergame, which we will refer to as a history. Each
history is represented as a point: a cooperation rate in the low state (horizontal axis), and in the
high state (vertical axis). The figure rounds these cooperation rates to the nearest tenth (and so the
figure can be thought of as an 11⇥ 11 histogram) illustrating the number of observed pairs at each
point with a bigger circle to represent a greater mass of observations.16

Figure 4(A) shows that while most histories in the pivot present a perfect or near-perfect coop-
eration rate in the low state, the dispersion is much larger along the vertical axis, suggesting the
presence of three broad categories of cooperation in the high state. The mass of histories near the

15Table 8 in the appendix provides the predicted cooperation levels by state obtained from a random-effect estimate,
while Table 10 explicitly tests whether the initial cooperation rate in each state is different than in subsequent periods.
16When a history never reaches the high state it is not possible to compute the cooperation rate in high. Such cases are
represented in the vertical axis with ‘NaN’ for not a number.
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top-right corner represent supergames where the choices come close to perfectly cooperative, as
predicted by the symmetric history-dependent SCD strategy. The mass in the bottom-right corner
has very low high-state cooperation rates, and is consistent with the MPE strategy MCD. Finally,
there is a group with high-state cooperation rates close to 50 percent, which could be consistent
with the asymmetric ACD strategy that alternates between C and D in the high state to achieve an
efficient outcome. However, other strategy pairs might also produce these patterns.

To further inquire which strategies best represent the subjects’ choices we use a strategy frequency
estimation method (SFEM, for additional details see Dal Bó and Fréchette, 2011).17 The method
considers a fixed set of strategies, and compares the choices that would have been observed had
the subject followed the strategy perfectly (taking as given the other player’s observed actions).
Using an independent probability 1 � � of making errors relative to the given strategy, the pro-
cess measures the likelihood the observed choice sequence was produced by each strategy. The
method then uses maximum likelihood to estimate a mixture model over the specified strategy set
(frequencies of use for each strategy) as well as a goodness-of-fit measure �, the probability any
choice in the data is predicted correctly by the estimated strategy mixture.

For the estimations reported in Table 5 we specify a very simple set of strategies.18 It includes
all four Markov strategies, MCC , MDD, MCD and MDC . In addition, the estimation procedure
also includes four strategies that aim to implement joint cooperation. First, we include the two
symmetric trigger strategies, SCD and SDD, which differ in the severity of their punishments.
We also include two versions of tit-for-tat (TfT ). The standard version starts by selecting C in
period one and from the next period onwards selects the other’s previous-period choice, where this
strategy has been documented as a popular choice in previous infinitely repeated PD studies despite
not being sub-game perfect. The only difference in the suspicious version (STfT ) is that it starts
by defecting in the first period. We also include two history-dependent asymmetric strategies that
seek to implement an efficient, alternating outcome: ACD and ADD, where the difference between
the two is again on the triggered punishment after a deviation.19

17SFEM has also been used in many other papers, in particular Fudenberg et al. (2010), who also conduct a Monte-
Carlo exercise to validate the procedures consistency. .
18The SFEM output provides two inter-related goodness-of-fit estimates � and �, and for comparability to other papers
we report both. The parameter � determines the probability of an error, and as � ! 0 the probability that the choice
prescribed by a strategy is equal to the actual choice goes to one. The probability that any choice is predicted correctly
is given by the easier to parse �, which is a transformation of �. Although the set of included strategies is simple, our
measures of goodness-of-fit are far from a random draw (a � value of 0.5). This suggests that with this limited set of
strategies it is possible to rationalize the data fairly well.
19Efficient asymmetric SPE not only require coordination over the off-the-path punishments to support the outcome,
they also require coordination over breaking symmetry the first time play reaches high. The strategy specifies that
one agent starts by selecting C, and the other D the first time the high state is reached. From then both play the
action chosen by the other player last period so long as the outcome is not (D,D), switching to the punishment path
otherwise. The appendices present the SFEM output with both strategy sub-components ACD =

�
AC

CD, AD
CD

�
and

ADD =
�
AC

DD, AD
DD

�
, where Aa

X is the strategy which starts with action a the first time the game enters the high
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The SFEM estimates for the pivot treatment, available in the first column of Table 5, reflect the
heterogeneity observed in Figure 4(A). A large mass of behavior is captured by three statistically
significant strategies with comparable magnitudes: MCD, SCD and TfT . The frequency of the
MPE strategy is slightly higher than one-fifth and reversion to that strategy is the most popular
among those using triggers to achieve joint cooperation, where these trigger strategies (SCD and
SDD) capture approximately 30 percent of the estimates.

The mass attributed to TfT represents approximately one-quarter of the estimates. In the En-DPD
game, though TfT is a not a symmetric Nash equilibrium, the strategy does provide substantial
flexibility. If paired with another subject using TfT , the outcome path results in joint cooperation.
However, when paired with other players that defect the first time the high-state is reached TfT

can produce an efficient path, and can be part of a Nash equilibrium (in particular, when paired to
ACD or ADD which lead with defection in high). TfT is therefore capable of producing both joint
cooperation and efficient alternation across actions in the high-state depending on the behavior it
is matched to.

3.3. Conclusion. The majority of the data in our pivot is inconsistent with the symmetric MPE
prediction of joint cooperation in low and joint defection in high. Though we do find that close to
one fifth of subjects are well matched by the MCD strategy profile, many more attempt and attain
efficient outcomes that remain in the high state. Over 60 percent of the estimated strategies are
those that when matched with one another keep the game in the high state forever through joint
cooperation (MCC , SDD, SCD and TfT ).

Looking to strategies detected in the infinitely repeated PD literature provides a useful benchmark
for comparison here. Dal Bó and Fréchette (2014) find that just three strategies account for the
majority of PD game data—Always defect, the Grim trigger and Tit-fot-Tat. Through the lens
of a dynamic game, the first two strategies can be thought of as the MPE and joint-cooperation
with an MPE trigger. The strategies used in our dynamic PD game therefore mirror the static PD
literature, where three strategies account for over 60 percent of our data: the MPE MCD; joint
cooperation with an MPE trigger, SCD; and tit-for-tat. Despite the possibility for outcomes with
payoffs beneath the symmetric MPE (in particular through the myopic strategy MDD which defects
in both states) the vast majority of outcomes and strategies are at or above this level, even where
history-dependent punishments are triggered. The MPE strategy is clearly a force within the data,
with approximately 40 percent of the estimated strategies using it directly or reverting to it on

state (see Table 15) and reverts to MX on any deviation. However, because the two versions of each strategy only
differ over the action in one period it is difficult for the estimation procedure to separately identify one from the other.
For simplicity of exposition Table 5 includes only the version in which the subject selects D in the first period of the
high state, AD

CD and AD
DD.
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miscoordination. However, the broader results point to history-dependent play as the norm. The
next three sections examine how modifications to the strategic environment alter this finding.

4. CHANGES TO THE EFFICIENT ACTION

Our pivot is parametrized so the first-best outcomes are asymmetric. Our first set of treatments
modify the pivot so the action maximizing the sum of the payoffs is unique and symmetric: joint
cooperation. We achieve this through two distinct changes to the temptations to defect from joint
cooperation: The first reduces the static temptation holding constant the continuation value from a
defection. The second reduces the continuation value from a defection holding constant the static
temptation.

4.1. Static Change (En-DPD-CC). Our first modification shifts the efficient actions by decreas-
ing the payoff ui ((D,C) , H) from 280 to 250. All other features of the pivot—the starting state,
the transition rule, all other payoffs—are held constant. The change therefore holds constant the
MPE prediction (cooperate in low, defect in high) but reduces the payoffs obtainable with com-
binations of (C,D) and (D,C) in high. Where in En-DPD the asymmetric outcomes produce a
total payoff for the two players of 410, in the modification it is just 380. Joint cooperation in high
is held constant, so that the sum of payoffs is 400, as in the pivot. The history-dependent trigger
SCD is still a symmetric SPE of the game, but its outcome is now first best, and the temptation to
deviate from it is lowered. As the main change in the game is to make the high-state action (C,C)

more focal, we label this version of our endogenous-transition PD game: En-DPD-CC.

The data, presented in Figures 3 and 4(B), displays many similar patterns (and some important dif-
ferences) with respect to the pivot. Initial cooperation rates in both states and both treatments start
out at similar levels, but the pattern of declining high-state cooperation across the session observed
in En-DPD is not mirrored in En-DPD-CC. High-state cooperation rates for the two treatments are
significantly different (at 90 percent confidence), but only for the last five supergames.20 Looking
at the supergame level in Figure 4(B), this increase is reflected through larger concentrations in the
top-left corner, perfectly cooperative supergames.

The estimated strategy weights in Table 5 indicate higher frequencies for strategies aimed at joint
cooperation. Strategies that lead to joint cooperation when matched (SCD, SDD, TfT and MCC)
amount to 70 percent of the estimated frequencies, an increase of ten percentage points over the
pivot. The estimated frequency of MPE play is diminished substantially, both directly as the MCD

strategy is not statistically significant, and indirectly through miscoordinations, as the symmetric
trigger with the most weight is the harsher-punishment trigger SDD.

20Statistical tests are reported in the appendix’s Table 9 from a random-effects probit clustering standard errors at the
session level.
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Like the En-DPD results, the large majority of outcomes in En-DPD-CC intend to implement
more-efficient outcomes than the MPE. The manipulation in En-DPD-CC makes joint cooperation
focal and so easier to coordinate on, and our data matches this with an even weaker match to the
MPE than the pivot. Our next treatment examines a similar exercise where we instead weaken the
continuation value on a defection from joint-cooperation.

4.2. Dynamic Change (En-DPD-HT). In the previous two treatments we discussed, once the
game reaches the high state, only joint defection moves it back to low. Where the last treatment
modified a pivot stage-game payoff so that joint cooperation is first best, our next treatment accom-
plishes the same thing through a change to the transition rule. Exactly retaining the stage-game
payoffs from En-DPD (cf. Table 2) we alter the transition rule in the high-state  (a,H) so that
any action except joint-cooperation switches the state to low next period. The complete transition
rule for the state is therefore

✓t+1 =  (at, ✓t) =

8
<

:
H if at = (C,C),

L otherwise.

As we are changing the high-state transition (HT) rule, we label the treatment En-DPD-HT.

There are two broad changes relative to En-DPD from this shift in the dynamics: i) the efficient
action in the high state becomes (C,C), as any defection yields an inefficient switch to low next
period; and ii) the individually rational payoff in high is reduced. In the pivot, conditional on
reaching the high state, each player can ensure themselves a payoff of at least 130 in every subse-
quent period by cooperating. However, in En-DPD-HT no agent can unilaterally keep the state in
high, as doing so here requires joint cooperation. The individually rational payoff in the high state
therefore shrinks to 1/4 · 190 + 3/4 · 60 = 92.5, with the policy that attains the minmax shifting to
MDD (where it is MDC in the pivot).

The most-efficient MPE of the game starting from the low state is the same as the pivot (MCD),
where the sequence of states and payoffs it generates is identical to that in En-DPD. However, the
change in transition rule means that both MDD and MDC are now also symmetric MPE, though
with lower payoffs than MCD.21 Efficient joint cooperation is attainable as an SPE with either
symmetric trigger, SDD and SCD.22

On the one hand, this change in the transition rule makes supporting an efficient outcome easier.
First, joint cooperation is focal, which may aid coordination. Second, the transition-rule change

21If the dynamic game were to begin in the high state, the MPE MDC yields an efficient outcome, as it effectively
threatens a reversion to the worst-case MPE path if either player deviates. However, given that our game sets ✓1 = L,
the path of play for this strategy is inefficient, as it traps the game in low forever.
22TfT is a Nash equilibrium of the game, but not an SPE, as there is a profitable one-shot deviation along paths that
deviate from joint cooperation.
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reduces the temptation in the high state, any deviation leads to low for sure next period, and so
is less appealing. On the other hand, the changed transition rule may also increase equilibrium
Markov play. In En-DPD an agent deviating from MCD in the high state suffers a static loss (a 130
payoff versus 190) that is partially compensated with an increased continuation (next period the
game will still be in high). However, in En-DPD-HT there is no reason at all to deviate from MCD

in the high state. A one-shot deviation produces both a realized static loss and no future benefit
either from a different state next period. For this reason, coordinating away from the MPE strategy
MCD becomes harder in En-DPD-HT.

While ex-ante the change in the transition rule could plausibly lead to either more or less MPE
play, the data displays a substantial increase in the selection of efficient outcomes. Looking at the
state-conditioned cooperation rates in Figure 3 and comparing En-DPD-HT to the pivot, the most
apparent results are the significant increase in high-state cooperation.23 Comparing Figures 4(A)
and (C) shows a clear upward shift, with the vast majority of histories in the upper-right corner,
tracking instances of sustained joint cooperation. Finally, the SFEM output in Table 5 indicates
a substantial increase in strategies involving joint cooperation along the path: adding MCC , SDD

and TfT , the total frequency is 91.2 percent.

While there is a clear increase in play that supports the efficient symmetric outcome, the SFEM
estimates also indicates a shift for the most-popular punishments. In the pivot (and En-DPD-CC)
the most-popular history-dependent strategy is TfT . But in En-DPD-HT the most-popular strategy
corresponds to the harshest individually rational punishment: SDD, the grim trigger.

We find no evidence for the best-case MPE, either directly through MCD, or through subjects using
it as a punishment on miscoordination with SCD. The only Markov strategy with a significant
estimate is MCC , which is harder to separately identify from history-dependent strategies that
succeed at implementing joint cooperation, and is the only Markov strategy inconsistent with some
MPE.24

4.3. Conclusions. In the two treatments above we reduce the payoff from a deviations from joint-
cooperation in the high state. In a static treatment we alter this stage-game payoff from this devi-
ation, and in a dynamic treatment we alter the continuation value. In both treatments the change
makes symmetric cooperation the efficient outcome, and reduces the temptation to deviate from
any history-dependent SPE that supports this outcome.
23The difference is significant at the 99 percent confidence level for the last five supergames.
24The SFEM can identify two strategies that implement joint cooperation only if we observe some behavior in a
punishment phase. Otherwise, two strategies such as SDD, SCD and MCC are identical. Hence, when the procedure
reports an estimate for MCC , it can be capturing either MCC or any history-dependent strategy that mostly cooperates
and either does not enter its punishment phase within our data, or where that path is closer to MCC than our other
coarsely specified strategies. Vespa (2015) develops an experimental procedure to obtain extra information that allows
to distinguish between such strategies and gain more identifying power.
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Observed behavior in each treatment move towards efficient outcomes, and away from the MPE,
though the effect is stronger in the dynamic manipulation (En-DPD-HT). One way to interpret
these treatment effects is that the changes aid subjects’ coordination, and reduce the effects of
strategic uncertainty. Because our manipulations reduce the set of efficient outcomes (and SPE)
the treatments suggest that the selection of history-dependent strategies over state-dependent ones
is not solely driven by absolute-efficiency tradeoffs, but also the ease of coordination.

5. CHANGES TO THE EXTERNALITIES

In the above treatments there are two strategic considerations to each subject’s chosen action.
First, from a static point of view, their choice affects their partner’s contemporaneous payoff. Sec-
ond, from a dynamic perspective, their choice affects the transition across states, and hence their
partner’s future payoffs. Both strategic forces may lead subjects to cooperate more if they think
inflicting these externalities on the other will affect future behavior. In this section we examine
four new treatments, that separate these two types of externality, to see how subjects’ behavior
responds to their absence. The first two treatments remove dynamic externalities, so that neither
player’s choice of action affects future values for the state, holding constant the En-DPD game’s
static externalities. The second treatment pair does the reverse: hold constant the pivot’s dynamic
externalities and remove the static externalities so neither player’s choice affects the other’s con-
temporaneous payoff.

5.1. Removing Dynamic Strategic Externalities.

Ex-DPD. To isolate the effects from dynamic externalities in En-DPD we change the transition
rule. We fix the stage-games payoffs from the pivot (Table 2) so the static externalities are the
same; however, we modify the state transition to remove any interdependence between the current
state and the actions chosen last period. In this way we remove the dynamic externalities. For our
first manipulation we choose an exogenous stochastic process for the new transition:

 (a, ✓) =  (✓) =

8
<

:
3/5 ·H � 2/5 · L if ✓ = L

4/5 ·H � 1/5 · L if ✓ = H.

The state evolves according to a Markov chain, which starts with certainty in the low state. If the
state is low in any period, there is a 60 percent chance the game moves to high next period, and a
40 percent chance it remains in low. Given the present period is high, there is a 20 percent chance
of a move to low next period, and an 80 percent chance it remains high.25 Given this exogenous
(Ex-) transition rule we label this dynamic PD treatment Ex-DPD.
25The Ex-DPD sessions were conducted after the En-DPD sessions were completed. The 60 percent and 80 percent
probabilities were chosen to match aggregate state frequencies in the En-DPD sessions.
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All MPEs of a dynamic game with an exogenously evolving state are necessarily built-up from
Nash profiles in the relevant stage games, as the continuation value of the game is independent of
the current actions (given the strategy’s history independence). Because the stage-games in each
state are PD games this leads to a unique MPE prediction: joint defection in both states. However,
more-efficient SPE exist that allow for cooperation in the low state and (C,D)/(D,C) alternation
in the high state.26

Looking at the experimental results for Ex-DPD, outcomes are starkly different from those where
the state’s evolution is endogenous. From Figure 3 it is clear that cooperation rates are much lower
than the pivot, for both states. In the low state, the initial cooperation levels in the first period are
40–45 percent, where this falls across the supergame so that the overall low-state cooperation rate
is closer to 30 percent. Cooperation in the high state is lower still, where average cooperation rates
fall from 15 percent at the start of the session, to just under 10 percent in the final five supergames.

The reduced cooperation in Figure 3 is indicated at the supergame-level in Figure 4(D), where
the large mass in the bottom-left corner is consistent with sustained defection in both states. This
pattern is reflected too in the treatment’s SFEM estimates in Table 5. The highest frequency is
attributed to the MPE, MDD, with an estimate of just under 60 percent. For those subjects who
do attempt to support cooperation, the strategies used tend to be SDD, reflecting a reversion to the
MPE profile when cooperation is not successfully coordinated on.27

Removing the dynamic externalities dramatically shifts the observed behavior in the laboratory,
leading to a collapse in cooperation. We isolate this result further with our next treatment, which
examines the extent to which the absence of any dynamics helps or hinders cooperation.

Ex-SPD. Our next modification goes further than Ex-DPD, so that there are no dynamics within
a supergame. To do this we alter the transition rule to keep the game in the same fixed state for
the entire supergame, so ✓t+1 = ✓t with certainty. Rather than a dynamic game, each supergame
is now an infinitely repeated static PD (SPD) game, and we label this treatment Ex-SPD. To attain
observations from subjects in both infinitely repeated stage games we make one additional change
to the pivot, altering the starting state ✓1. For each supergame in Ex-SPD the starting period is the
realization of the lottery, 3/5 ·H � 2/5 ·L. The chosen game therefore has the advantage of making
the experimental environment and instructions similar to our other dynamic-game treatments (in
terms of language, complexity and length).
26An asymmetric SPE that remembers whose turn it is to cooperate (defect) in high exists for � = 3/4, given an MDD-
trigger on any deviation. History-dependent cooperation only in the low state can be sustained as a symmetric SPE
with joint-defection in the high state at � = 3/4, however, it is not an SPE to jointly cooperate in the high state, even
with the worst-case MDD-trigger on a deviation.
27We also estimated strategy weights for this treatment adding the history-dependent strategy that supports cooperation
only in the low state, described in footnote 26. The frequency estimate is 5.9 percent and is not significant. Subjects
who aim to cooperate in this treatment try to cooperate in both states.
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Comparing aggregate-level results in Figure 3 it is clear that cooperation rates in Ex-SPD are
higher for both states than for Ex-DPD. Because supergames are in a single fixed state, Figure 4(E)
shows the results on separate axes. The figure indicates a large number of supergames with joint
defection when the selected supergame state is high, but a larger degree of heterogeneity—and
relatively more cooperation—when the supergame’s state is low.

SFEM estimates are presented by state in Table 5, and for this treatment we exclude from the es-
timation those strategies that condition differentially across states. When ✓ = H , the frequency
of always defect (here labeled MDD) is comparable to the estimate for Ex-DPD. However, more-
cooperative TfT strategies (both the standard and suspicious variety) are also selected, with ag-
gregate frequencies close to 40 percent, substantially higher than in Ex-DPD. The contrast with
Ex-DPD behavior is starker in the low state. In this case, the frequency attributed to always de-
fect (MDD) is lower, where approximately three-quarters of the estimated strategies correspond
to attempts to implement joint cooperation. The cooperation rates for both states in Ex-SPD are
therefore in line with the larger experimental literature on infinitely repeated PD games, despite
within-subject changes to the stage-game across the session.28

Summary. Removing the dynamic externality from the pivot in Ex-DPD leads to a collapse of
conditional cooperation, and the MPE becomes focal. However, when we remove the dynamics
entirely, so that subjects face each stage game as a repeated game, we find an increases in the
cooperation rate in both states relative to Ex-DPD. Having an evolving state within the supergame
therefore makes it harder for subjects to cooperate. Equilibrium selection does respond to dynamic
externalities, suggesting that the endogenously evolving state is a component in the selection of
history-dependent cooperation in our pivot.

5.2. Removing Static Strategic Externalities. The previous subsection detailed what happens
when we remove the pivot’s dynamic externalities, but retain its static tensions. We now carry out
the reverse exercise: turn off the static externalities, retaining the pivot’s dynamic environment.
Fixing the pivot’s transition rule  —joint cooperation is required to transit from low to high, while
anything but joint defection keeps the game in high—the next two treatments alter the stage-game
payoffs, so that each player’s static payoff is unaffected by the other’s choice.29 Removing static
externalities means the stage-game is no longer a PD game, and so we refer to this game instead as
a dynamic common-pool (DCP) problem. For greater comparability with the pivot, two separate
parametrizations are used, with stage-games presented in Table 3.

28In infinitely repeated PD, the basin of attraction of the grim-trigger (SDD) helps predict cooperation. The basin of
attraction of SDD is the set of beliefs on the other’s initial choice that would make SDD optimal relative to MDD.
The low-state PD game has a basin of attraction for SDD for any belief on the other also using SDD above 0.24. In
contrast, in the high-state game Grim is strictly dominated by playing always defect.
29The restriction is therefore that ui ((ai, a�i) , ✓) = ui

��
ai, a

0
�i

�
, ✓
�

for all a�i, a
0
�i 2 A�i.
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TABLE 3. Dynamic Common Pool Treatments

(A) Markov Parametrization (En-DCP-M)

✓=Low ✓=High
2: 2:

C D C D

1: C 100,100 100, 125 1: C 130,130 130,190
D 125,100 125,125 D 190,130 190 ,190

(B) Efficiency Parametrization (En-DCP-E)

✓=Low ✓=High
2: 2:

C D C D

1: C 100,100 100,125 1: C 130,130 130,280
D 125,100 125,125 D 280, 130 280,280

Both parametrizations have the same payoffs in the low state: cooperation yields a payoff of 100,
defection 125, regardless of what the other player chooses. The low-state payoff from selecting
D corresponds to the pivot’s temptation payoff, while the payoff from selecting C matches joint
cooperation in the pivot. However, though selecting C in the low state involves a relative static loss
of 25 it has a potential dynamic gain, the possibility of transiting to high next period if the other
player also cooperates.

In the high state, we set the payoffs from choosing to cooperate at 130 in both parametrizations,
which matches the high-state sucker’s payoff in the pivot. The only difference between our two
parametrizations is the payoff from choosing D in the high state. In the treatment we label “En-
DCP-M” the payoff from defecting in high is set to 190, matching the pivot’s joint-defection pay-
off. In the treatment we label “En-DCP-E” the payoff from defection is instead set to 280, matching
the pivot’s temptation payoff.

The En-DCP-M stage-game payoffs are chosen to match the payoffs attainable with the MPE
(hence ‘-M’) outcome in the pivot. The strategy MCD in En-DCP-M yields exactly the same
sequence of payoffs (and the same static/dynamic differences after any one-shot deviation) as the
pivot. Although efficient outcomes still involve any combination of (C,D)/(D,C) in the high
state, the payoffs realized from efficient paths here are lower than the pivot. To provide a control
for this our En-DCP-E treatment’s payoffs match the efficient (hence ‘-E’) payoffs in the pivot.
Conversely though, the payoffs from the most-efficient MPE are higher than in the pivot.

In both DCP treatments the most-efficient pure-strategy MPE uses MCD, though MDD also be-
comes a symmetric MPE. Efficient outcomes in both treatments are identical to the pivot and
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require asymmetric play.30 If coordinated upon, taking turns cooperating and defecting in high
can be supported as an SPE with a triggered reversion to either MCD or MDD in the En-DPD-M
parametrization. So both ACD and ADD are SPE in En-DPD-M. However, this efficient outcome
is only supportable as an SPE with an MDD trigger in En-DPD-E (the strategy ADD).31

In terms of symmetry, the DCP treatments involve a change in the opposite direction from the
efficiency manipulations presented in Section 4. Where those treatments lower the efficient frontier
to make joint cooperation efficient, the DCP treatments fix the pivot’s efficient outcomes and lower
the value of symmetric cooperation. Joint cooperation is therefore less focal, and its static payoff
is Pareto dominated by any action profile with defection. More so, joint-cooperation forever is not
only less efficient than it was in the pivot, the symmetric MPE strategy MCD is the Pareto-dominant
symmetric SPE for our DCP treatments.

En-DCP-M treatment. The aggregate results in Figure 3 indicate reduced cooperation in both
states relative to the pivot. However, the cooperation rate in the low state is still significantly
greater than in the high state, particularly at the start of the supergame. At the history level Fig-
ure 4(F) shows a relatively large degree of variation across supergames, but with the largest mass
concentrated at the bottom-right corner, consistent with the best-case MPE prediction, MCD.

The SFEM estimates confirm the intuition from Figure 4(F), where the modal strategy is the most-
efficient MPE with close to 30 percent of the mass. However, efficient asymmetric strategies that
alternate in the high state do account for approximately a quarter of the data, suggesting a greater
focus on them when the (slightly) less-efficient symmetric outcomes are removed. Just over 10
percent of the estimates reflect TfT , which as argued earlier can generate efficient asymmetric
paths when it meets a complementary strategy. Relative to the pivot there is a large reduction in
strategies implementing joint cooperation, where subjects avoid this pareto-dominated outcome.

En-DCP-E treatment. The patterns in our second common-pool parametrization have a starker
match to the best-case MPE. The difference in average cooperation rates between the two states is
larger than in En-DCP-M (Figure 3), where the largest mass of supergames are in the bottom-right
corner of Figure 4(G). Looking at the SFEM results, the most popular strategy by far is MCD,
with an estimated frequency close to two-thirds. History-dependent strategies that implement effi-
cient outcomes are estimated at very low (and insignificant) frequencies. In fact, the only strategy
showing a significant estimate involves reversion to MCD when it (frequently) miscoordinates.

30Had the pivot game’s efficient frontier involved joint cooperation we would not have been able to make a clear
efficiency comparison with any DCP treatment. Instead, in our global experimental design, the efficient outcome in
the pivot and En-DCP-E both require asymmetric high-state outcomes.
31In addition, unlike the pivot not all efficient outcomes can be sustained as SPE for the DCP treatments.
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Summary. Our dynamic common-pool treatments suggest increases in the selection of Markov
strategies as we remove static externalities, in particular the best-case MPE MCD. We do find
some evidence for greater coordination on efficient asymmetric SPEs in En-DCP-M, relative to
the pivot, where the treatment removes second-best symmetric SPEs (such as SCD). However,
as we increase the opportunity costs incurred from initiating efficient alternating cooperation in
En-DCP-E—giving up 280 instead of 190 by cooperating first—this coordination on asymmetric
outcomes disappears. By comparing behavior in these treatments to the pivot we conclude that
subjects’ strategy selections do respond to the presence of static externalities, with an increase of
symmetric MPE play as we remove them from the pivot.

5.3. Conclusion. Removing either the dynamic or static externalities in our En-DPD game weak-
ens the theoretic desirability of more-efficient history-dependent strategies. For the treatments
without endogenous dynamics, the power of history dependence is reduced as the future path of
play can no longer be leveraged by the punishment path. In our treatments without static external-
ities, the change forces more-efficient outcomes to be asymmetric, and constraining to symmetric
SPE, MCD is the best outcome.

Presenting data from four treatments that are similar to the pivot but with each type of externality
removed, we show that subjects’ behavior responds with a greater selection of the relevant equi-
librium Markov play than the pivot. The presence of both types of externality are therefore shown
to be important to the selection of more-cooperative outcomes.

For the common-pool treatments it is possible that the absence of a more-efficient symmetric SPE
is the primary driver for the increased Markov play, rather than the absence of static externalities.
Though further research will likely separate between these forces more exactly, some evidence
already exists. Vespa (2015) examines a dynamic common-pool game, but where the state-space
has no upper bound, so that joint cooperation always leads to a higher payoff state. In his setting
an efficient symmetric SPE exists, but modal behavior still mirrors the MPE prediction, suggesting
that the absence of static externalities can be an independent driver for coordination on a state-
conditioned response. His game also has a richer state-space, and this increased complexity may
also contribute to the result. We turn to this selection channel in the next section.

6. CHANGES TO THE COMPLEXITY OF THE STATE-SPACE

One possible reason for the failure of the MPE predictions in our pivot is that the state-space is
too simple. History-dependent strategies are common in experiments on the infinitely repeated
PD games, with just one state. At the other extreme with an infinite number of states there is
experimental evidence for Markov play (cf. Battaglini et al., 2014; Vespa, 2015). One potential
selection argument for state-dependent strategies is simply the size of the state-space, where the
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20 percent MPE play we observe in our pivot would, ceteris paribus, increase as we add more state
variables. Our final two treatments examine this idea by manipulating the pivot game to increase
the size of the state-space. In so doing, we assess whether the presence of a richer state-space leads
to a greater frequency of cognitively simpler Markov strategies.

The first of these treatments increases the number of payoff-relevant states from the pivot by adding
exogenous, non-persistent shocks, independent of the original state variables. These shocks are
moderately small in scale, and can therefore be thought of as a perturbation of the pivot’s main
strategic tensions, but with an order-of-magnitude increase in state complexity. The second treat-
ment adds just two further states to the pivot—one below Low, the other above High—but both
new states are associated with entirely distinct stage games, and are reached endogenously along
the path of play. However, the two additional states are constructed to that neither the MPE nor the
efficient outcomes should ever enter the new states.

6.1. Static Complexity (En-DPD-X). One simple way to add states while holding constant many
of the pivot’s strategic tensions is payoff-relevant noise. Our first complexity treatment adds a
commonly known iid payoff shock each period through a uniform draw xt over the support X =

{�5,�4, . . . , 4, 5}.32 The specific payoffs in each period are given by

ui (a, (✓, x)) =

8
>>>>><

>>>>>:

ûi(a, ✓) + x if ai = C and ✓ = L,

ûi(a, ✓)� x if ai = D and ✓ = L,

ûi(a, ✓) + 2 · x if ai = C and ✓ = H,

ûi(a, ✓)� 2 · x if ai = D and ✓ = H,

where ûi(a, ✓) are the En-DPD stage-game payoffs in Table 2. The modification therefore adds an
effective shock of 2 · xt in the low state (or 4 · xt in the high state) when contemplating a choice
between C or D. The effect of the shock is static, as the draw next period xt+1 is independent,
with an expected value of zero. The state-space swells from two payoff-relevant states in En-DPD
to 22 here ({L,H}⇥X , with the 11 states in X), where we will henceforth refer to this treatment
as En-DPD-X .

Increasing the state-space leads to an increase in the set of admissible pure, symmetric Markov
strategies. From four possibilities in the pivot, the increased state-space now allows for ap-
proximately 4.2 million Markov strategies. However, of the 4.2 million possibilities only one
constitutes a symmetric MPE: cooperate at all states in {(L, x) |x 2 X }, defect for all states in
{(H, x) |x 2 X }. The game therefore has the same effective MPE prediction as our pivot.

32This form of shock is common in IO applications that aim to structurally estimate the parameters of a dynamic game.
See, for example, Ericson and Pakes (1995).
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Moreover, the efficient frontier of the extended-state–space game is (for the most part) unaltered,
as are the set of simple SPEs.33 Because of the strategic similarity to En-DPD, all the symmetric
SPE that exist in the pivot have analogs here, while every efficient outcome is again supportable as
an SPE using asymmetric history-dependent strategies. Importantly, given its focality in the pivot,
joint cooperation can still be supported with a Markov trigger.

Examining the results for En-DPD-X in Figure 3, we see qualitatively similar average cooper-
ation rates to those in the pivot. Comparing Figures 4(A) and (H), this similarity extends to
the supergame level, though the slightly greater cooperation in both states for En-DPD-X is a
little more apparent.34 To make the comparison across treatments cleaner, the SFEM estimates
use the same strategies as our previous treatments, and thus ignore strategies that condition on
the shock xt 2 X .35 The levels of equilibrium Markov play captured by the MCD estimate are
non-negligible, but compared to the less-complex pivot we actually see a decrease in its assessed
weight. The largest difference between these two treatments is a substantial reduction of TfT

in favor of higher estimates for MCC . This suggests that joint cooperation is more robust in En-
DPD-X than the pivot, where some supergames are not triggering deviations after the first failure.
Potentially the additional strategic uncertainty introduced into the game with the exogenous shock
increases subjects’ leniency.

Summary. Following our interpretation of this treatment as a perturbation of the pivot, the broad
results point to a continuity in equilibrium selection with respect to the main strategic tensions of
the dynamic game, where the size of the state-space does not on its own increase the selection
of MPE strategies. Though we perturb the game’s presentation quite substantially, the outcomes
in our En-DPD and En-DPD-X treatments are remarkably similar, reflecting their similar core
strategic tensions.

6.2. Dynamic Complexity (En-DPD-˜⇥). In the En-DPD-X treatment the additional state vari-
able only affects the current period. Our final treatment enriches the state-space by adding two
new states that can be endogenously reached along the path. In contrast to the first complexity
treatment, our second alters the complexity over both what will happen this period (if the new
states are reached) and conjectures over where the state is headed in future periods (at all states).

33The sum of payoffs are maximized through any combination of (C,D)/(D,C) in the high state, unless xt � 3, at
which point (C,C) is superior.
34By the last five rounds, the average behavior depicted in Figure 3 for En-DPD-X is significantly more cooperative in
both states.
35At the aggregate level, there is evidence of a correlation between the cooperation rate and the value of x in the high
state. In the appendix, Figure 5 displays the cooperation rates for different values of x. Table 16 expands the SFEM
analysis by including Markov and history-dependent strategies that condition on x. The main conclusions we present
in the text are unaffected by this expansion.
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TABLE 4. En-DPD-˜⇥ additional stage games

✓=Very Low (vL) ✓=Very High (vH)
2: 2:

C D C D

1: C 60,60 40,10 1: C 200,200 10,380
D 10,40 20,20 D 380,10 85,85

Our dynamic-complexity treatment extends the state-space to ˜

⇥ = {vL, L,H, vH} with the added
states “very low” (vL) and “very high” (vH), where we label this treatment En-DPD-˜⇥.36

The pivot’s transition rule is extended to the four new states, with the same overall intuition: joint
cooperation moves the supergame up a state (until the ceiling vH is reached); joint defection
moves the supergame down a state (until the floor vH is reached). In all other cases the state is
held constant. The new transition rule ensures all four states can be reached, and is given by

 (a, ✓) =

8
>>>>>>>><

>>>>>>>>:

vH if (✓ = H ^ a = (C,C)) ,

H if (✓ = L ^ a = (C,C)) _ (✓ = vH ^ a = (D,D)) ,

L if (✓ = vL ^ a = (C,C)) _ (✓ = H ^ a = (D,D)) ,

vL if (✓ = L ^ a = (D,D)) ,

✓ otherwise.

Payoffs in the low and high states are identical to those used in En-DPD, and we again start all
supergames in the low state with certainty. For the two added states, the stage-game payoffs are
given in Table 4.

The very-low stage game is chosen to have cooperation as the efficient, dominant strategy, where
both players cooperating is both statically and dynamically efficient. We calibrate the payoffs so
that when both players choose the dominant strategy of C in vL they receive the same payoff as
joint defection in the pivot’s low state. For our very-high state we choose a PD game (with D as
the dominant strategy), and choose ui ((C,C) , vH) = 200 so that symmetric joint cooperation
in all periods yields an identical sequence of payments to the pivot. In order to keep the efficient
outcomes identical to those in En-DPD, we set the off-diagonal payoffs in the vH stage-game so
that alternation between (C,D) and (D,C) in this state is less efficient than the same alternation in
H . However, we substantially increase the temptation to defect, with a payoff of 380. Finally, we
set the joint defection payoff ui ((D,D) , vH) to $0.85. This has the effect of making alternation

36In the experiment the additional states were referred to as the Green Table for vL and the Orange Table for vH .
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between the high and low states superior to alternation between high and very high (47 · 190 +
3
7 ·

130>4
7 · 200 +

3
7 · 85).37

The pure-strategy MPE of the new game are (by construction) directly analogous to the pivot. The
unique pure-strategy symmetric MPE is to cooperate in the low and very-low states, and defect in
the high and very-high states. As such, along the path of play that starts in low, the supergame
should only visit the low and high states under the MPE, yielding the same sequence of states and
payoffs as MCD in the pivot.38 SPE exist that can attain any efficient outcome, as do symmetric SPE
that maintain joint cooperation (in particular the analogues to SCD and SDD), yielding identical on-
path payoffs to joint-cooperation in the pivot. However, our constructed game makes deviations
from joint cooperation a dollar more tempting once vH has been reached.

Looking at the experimental results, overall cooperation rates are significantly lower than the pivot
for both the low and high states (see Figure 3). The cooperation rates when the game reaches
the vL state (which necessitates at least one joint-defection in low) are very high: 90 percent for
the first five supergames falling to 85 percent for the last five. Cooperation rates in the vH state
vary from 55 percent in the first five cycles to 60 percent in the last five. Surprisingly, the average
cooperation rate in the vH state, with its more-powerful temptation to defect, is actually larger
than in the H state.

At the history-level, the horizontal axis of Figure 4(I) measures the cooperation rate in either the vL
or L states, and the vertical axis cooperation rates in either the H or vH states. Contrasting Figures
4(A) and (I) the observed patterns are similar, once we exclude the larger fraction of supergames
that never get to the H-state or beyond (the supergames on the lower ‘NaN’ line).39

Comparing the pivot and En-DPD-˜⇥ in the strategy estimates in Table 5 we observe similar total
levels for Markov strategies, representing about one-third of the data in each case.40 The equi-
librium Markov strategy MCD is still the most popular of the four, but the estimates do show an

37The individually rational payoff in the high state is still 130, while it is lower at 1
4 · 85 + 3

4 · 130 in the very high
state. The individually rational payoff is 40 in the very low state, and is reduced from 60 to 45 in the low state.
38Paralleling En-DPD there is a pair of asymmetric MPE where one player defects in high and the other cooperates.
The rest of the strategy is identical for the two players: cooperate in very low, defect in low, defect in very high.
Given that low is the starting state, this MPE is inefficient, and alternates between low and very low. If this asym-
metric Markov strategy is selected, there is a differing sequence of states selected relative to the sequence in En-DPD,
however, the sequence of payoffs is constructed to be identical.
39For example, the cooperation rates in the high state when we exclude the supergames that do not reach the high state
are similar. In the pivot, conditional on getting into the high state in period two (186 of 210 supergames), 38 percent
manage to coordinate on joint cooperation. For En-DPD-⇥ only 146 of the 210 supergames reach the high state, but
42 percent of these then coordinate on joint cooperation.
40For this treatment Table 5 and the text will abuse notation. A Markov strategy in this treatment should indicate the
actions for each of the four possible states, so we could write the equilibrium strategy as MCCDD for, respectively,
cooperation in very low and low, and defection in high and very high. However, for simplicity and comparability
to our other treatments we will restrict the Markov-strategies we look at to cooperate in very low and defect in very
high. Where we show estimates for the strategy M�L�H

, we mean MC�L�HD. Strategy estimation with more Markov
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increase in MDD and a decrease in MCC , reflective of the increased frequency of supergames
that never enter the high state. Since MCC is the only Markov strategy profile which is not
consistent with any equilibrium solution concept, but its outcome is consistent with successful
history-dependent strategies, the estimates in En-DPD-˜⇥ can be seen as pointing toward greater
state-dependent equilibrium play.

In terms of history-dependent strategies the combined frequency does not change substantially
from the pivot, but there are shifts over which particular strategies are used. Strategies supporting
joint cooperation represent about a half of the estimates in En-DPD-˜⇥, but the most common is the
SDD trigger, where this unforgiving trigger is a better response to the greater incidence of MDD. In
contrast, the pivot has TfT and SCD as the two most-common cooperative strategies, and choosing
MDD is rare, both as an initial choice or through a trigger on miscoordination.

Relative to the pivot then, the main shift we observe is an increase in MDD, both directly and
indirectly as a punishment after a failed attempt at cooperation. While both players using MDD

is not sub-game perfect (either in En-DPD-˜⇥ or the pivot) as there is a profitable deviation in the
unreached high state, it is a Nash equilibrium. Moreover the induced path of play is consistent
with an asymmetric MPE of the game (MDD,MDC).

In the pivot, the first-period cooperation rate is close to 95 percent so that less than one out of
every ten supergames fails to enter the high state in period two. However, in En-DPD-˜⇥ the initial
cooperation rate is significantly lower (at approximately 80 percent), which leads to 36 percent
of supergames failing to get to high in period two.41 First round defections in the En-DPD-˜⇥
treatment are particularly damaging: not only is the outcome that period inefficient, dynamically it
becomes much more likely that the supergame will be stuck cycling between the low and very-low
states. In period two, following an initial period where one player defects, only 12 percent of the
52 En-DPD-˜⇥ supergames with this history manage to recoordinate on joint cooperation and reach
the high state, while 46 percent are jointly defective and so move to vL. In contrast, 55 percent of
supergames in the pivot with the same miscoordinated initial history (22 supergames) have joint
cooperation in period two, and none have joint defection.

Subjects are therefore less likely to initially cooperate in En-DPD-˜⇥ than the pivot, but also less
willing to forgive these initial defections. Given the constructed similarities between the two

strategies for En-DPD-⇥̃ is presented in Table 16 of the appendix, where we show that little is lost with the particular
restrictions in vL and vH .
41A random-effects probit at the subject level assessed over the last five supergames rejects equivalence for first-period
cooperation in En-DPD and En-DPD-⇥̃ with 95 percent confidence.
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games, the larger set of endogenous states does seem to make subjects less optimistic that the
other will cooperate in future states and hence they are less likely to cooperate to begin with.42

6.3. Conclusion. The results in the complexity manipulations show that simply expanding the
state-space on its own does not lead to a large increase of equilibrium Markov play. In fact, in En-
DPD-X while we substantially increase the size of the state-space from 2 to 22 states, we find that
cooperative outcomes are actually more likely. The presence of a large number of payoff-relevant
states is not inhibiting subjects from coordinating on more-efficient outcomes than the MPE.

In En-DPD-˜⇥ we have a smaller increase in the state-space (from two to four states), but where
the new states are now endogenously reached. While we do find a small increase in equilibrium
state-dependent strategies (from 23.5 percent in the pivot to 33.3 percent), the larger effects are
greater variation over the strategies subjects are trying to coordinate over. Though there is not a
huge increase in ex ante Markov play, greater miscoordination within the supergame leads to more
paths of play that are eventually state-dependent and consistent with the MPE predictions.43

7. DISCUSSION

7.1. Summary of Main Results. Our paper presents experimental results over a core pivot game,
and eight modifications to it that create variation across three themes: i) coordination and effi-
ciency; ii) the presence of different types of strategic externalities; and iii) the complexity of the
state-space. Within each treatment we manipulate whether the changes are to the static or dynamic
tensions within the game. We now summarize our main experimental results:

Result 1 (History Dependence). Having a dynamic game does not necessarily lead to the selection
of MPE. Most subjects who do not use Markov strategies aim to implement more efficient outcomes
with history-dependent play.

Evidence: Most behavior in En-DPD, En-DPD-CC, En-DPD-HT and En-DPD-X can be best
described with more-efficient SPE strategies than any MPE profile. Though the symmetric MPE
does very well at predicting some of our treatments (in particular Ex-DPD and En-DCP-E), the
majority of our games are better explained via history-dependent strategies.

Result 2 (Markov Selection). For subjects who use Markov profiles, the symmetric MPE is the
focal response.
42Our experiments do not allow us to identify whether this comes from the presence of the very high state (for instance,
causing cooperation to unravel from the top) or the very-low state (where lower possible payoffs cause players to focus
on the individually rational actions).
43In the appendix we provide estimates from the SFEM procedure only over the four Markov strategy profiles, using
data from the last three periods of each supergame. While the pivot estimate has approximately half of the data on
MDD and MCD, the En-DPD-⇥̃ has 100 percent across the two.
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Evidence: In all treatments with endogenous transitions MCD is the most-efficient MPE predic-
tion. We find that this is the Markov strategy with the highest frequency in En-DPD, En-DCP-M,
En-DCP-E and En-DPD-˜⇥. In En-DPD-CC, En-DPD-HT and En-DPD-X the Markov strategy
with the highest frequency is MCC , but we note that this strategy is more-likely to be conflated
with more-lenient history-dependent strategies.44 In treatments with exogenous transitions, MDD

is the unique MPE and it is also the Markov strategy with the highest frequency.

Result 3 (Coordination and Efficiency). Reducing the static or dynamic temptations to deviate
away from efficient symmetric SPE outcome increases the selection of more-efficient cooperative
outcomes.

Evidence: In En-DPD-CC and En-DPD-HT we make it easier to sustain joint-cooperation, reduc-
ing the temptation to defect from an SCD trigger. In both cases, cooperation increases, though
more so for the dynamic modification in En-DPD-HT.

Result 4 (Response to Static/Dynamics). Behavior is sensitive to both static and dynamic tensions
within the game.

Evidence: Theory motivates that both static and dynamic effects will drive whether an outcome
is an equilibrium. Static changes to the stage-game payoff ui(a, ✓) produce significant shifts in
behavior (En-DPD!{En-DPD-CC, En-DCP-E, En-DCP-M, En-DPD-X}). Similarly, changes to
the game’s transition rule affect the game’s continuation value, and we again see significant shifts
in behavior (En-DPD!{En-DPD-HT,Ex-DPD, Ex-SPD,En-DPD-˜⇥}).

Result 5 (Complexity). Adding exogenous states (shocks) does not lead to an increase in MPE
play, and more cooperative outcomes are still common. However, while adding more endogenous
states does not lead to an increase in the selection of the MPE, the presence of additional states
does alter behavior, leading to lower cooperation and greater miscoordination.

Evidence: Our two treatments with richer state-spaces lead to differing rates of cooperation.
Where we add exogenous non-persistent shocks to the payoffs each round (En-DPD!En-DPD-X)
44Along the equilibrium path strategies that implement joint cooperation and MCC are identical and the SFEM cannot
separately identify them. An simple alternative to evaluate whether what we identify as MCC is actually the successful
outcome of joint cooperation is to look at subjects’ behavior across supergames. We first identify all subjects who
have at least one supergame where the subject and their partner cooperated in every period. For these “cooperating”
subjects we then focus on all other supergames where they started by cooperating but their partner defected at least
once. In these supergames behavior would be consistent with MCC if subjects keep on cooperating regardless of their
partner’s behavior. For the treatments in which MCC is statistically significant in Table 5 we report the proportion of
supergames where the choices of “cooperating” subjects can still be captured by MCC even if their partner defected
at least once. The proportions are: 25.7, 29.2, 18.6 and 23.1 in En-DPD-CC, En-DPD-HT, En-SPD (✓ = L) and
En-DPD-X, respectively. This figures indicate that the vast majority of subjects who use MCC once do punish if their
partner defects.
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the aggregate observed behavior looks similar, if anything moving away from the MPE and towards
higher-efficiency outcomes. When we add additional endogenous states (En-DPD!En-DPD-⇥)
overall Markov play stays fairly constant, but the lower-payoff Markov profile MDD is selected at
a relatively higher frequency, and MCC is much reduced. As the number of states increase, so too
does the set of plausible strategies. Coordination therefore becomes more challenging, and some
subjects become more pessimistic, pushing behavior away from cooperation.

7.2. Toward a Selection Index. The larger experimental literature on infinitely repeated games
has identified two main determinants of history-dependent cooperative behavior (see the survey of
Dal Bó and Fréchette 2014 for further details). First, whether or not cooperation can be supported
as an SPE is predictive of outcomes. Second, and more fine-grained, the smaller the size of the
basin of attraction (BA) for the always-defect strategy (MD) relative to conditional cooperation
(SD, the grim trigger), the more likely cooperation is to emerge. The basin of attraction for MD is
the set of beliefs on the other player being a conditional cooperator that would make MD optimal
relative to SD. In other words, when a relatively low belief on the other cooperating is enough to
make conditional cooperation attractive, then the basin for MD is small, and cooperative behavior
more likely to emerge. As a simple rule of thumb, the literature offers the binary selection crite-
rion: if the grim-trigger in the particular environment is risk-dominant (basin larger than one half),
history-dependent cooperative SPE are more likely.

While our experiments were designed to investigate behavior across qualitative features of the
game, a natural question given our results is whether predictive selection indices like the size of
the BA can be generalized to dynamic environments. This leads to questions over which strategies
are reasonable to construct a dynamic extension of the basin over? For infinitely repeated PD
games, the two strategies compared can be thought of as the MPE (MD) and a symmetric strategy
that supports the efficient outcome with a Markov trigger (SD). But even in our simple dynamic
games there are many potential MPEs and SPEs that might be used in the extension. Using the
results in the last subsection we motivate the following: i) The basin calculation should respond to
both static and dynamic strategic externalities, motivating extensions of the BA that integrate the
entire dynamic game machinery into their calculation; ii) symmetric strategies are focal; iii) where
the MPE is selected, the best-case MPE is the most-useful predictor; and iv) Though we do find
evidence for other strategies (for instance, tit-for-tat) trigger strategies that revert to the MPE on a
deviation are common.

The above motivates our focus on a binary strategy selection across: i) the dynamic-game �’s most-
efficient symmetric MPE (M�), and ii) the most-efficient symmetric outcome path sustainable as
an SPE with a reversion to M� on any deviation (S�). Our simple dynamic-game BA index is
therefore p?� = p?(S�,M�;�): the probability of the other player choosing S� that makes the agent
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FIGURE 2. Basin of Attraction for the MPE
Note: The figures horizontal axis shows the size of the Basin of Attraction for the MPE relative to the most-efficient
symmetric SPE with an MPE trigger, p? (S�,M�;�). The vertical axis presents the average cooperation rate in the
period where the two strategies in the basin calculation diverge q̂ (period two for all treatments except Ex-DPD and
Ex-SPD with low and high starting states, where coordination is resolved after the first period).

indifferent between an ex ante choice of S� or M�. In our pivot game En-DPD, the two selected
strategies would be SCD and MCD, and for � = 3

4 the index calculation is p?(SCD,MCD) = 0.246,
so that for all beliefs that the other will play SCD above one-in-four, it is optimal to choose SCD

oneself.45

Given the theoretical index p?� we now want to compare the index with a measure of behavior in the
experimental sessions, q̂�. In the infinitely-repeated game literature the focal outcome measure is
the first-period cooperation rate in supergames. Again we need to make a modification to account
for the dynamic-game setting: In the pivot, both the MPE and the SPE strategies are predicted to co-
operate in the first low period. So first-round cooperation will not be informative on the differential
selection between the MPE and more-cooperative outcomes. Instead we focus on the cooperation
rate q̂� in the first round where M� and S� are expected to choose differing actions. For the pivot,
the strategies SCD and MCD cooperate in round one and then choose differing actions in the high
state for the second-round, C and D, respectively. Looking at the last five supergames in the pivot

45The calculation leads to the following normal-form representation for the row player’s discounted-average payoff
(where ⇡H

MCD
= 1

1+� · 190 + �
1+� · 100 is the high-state payoff under the MPE MCD):

SCD MCD

SCD (1� �) · 100 + � · 200 (1� �) · 100 + (1� �)� · 130 + �2 · ⇡H
MCD

MCD (1� �) · 100 + (1� �)� · 280 + �2 · ⇡H
MCD

(1� �) · 100 + � · ⇡H
MCD

Note that the first-period action payoff is the same regardless of the cell and so will not affect the basin calculation.
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sessions, 56.2 percent of our subject-supergames have paths consistent with ((C,C) , L) , (C, ·, H)

and so for the pivot the basin-behavior pair (p?, q̂) is given by (0.246, 0.562).46 Figure 2 provides
a plot of each index-behavior point across our treatment set (and some sub-treatments where the
prediction differs) illustrating the basin’s predictive power.47

As illustrated by Figure 2, the basin calculations predict initial supra-MPE cooperation fairly well.
Given the 12 data points represented, an OLS regression indicates that the cooperation rates are
significantly related to the size of the MPE basin for each game (99 percent confidence). For a sim-
pler rule, risk-dominance of the MPE is also predictive of selection. A simple, easy-to-calculate
criterion for the appropriateness of an MPE assumption is whether the MPE risk dominates the
best-case symmetric SPE (with the MPE triggered as a history-dependent punishment on any de-
viation).

However, rather than focus here on the overall predictive success of the basin, we now instead out-
line where it might be further refined through more-targeted future research. The largest disconnect
between the fitted relationship for the MPE basin measure and cooperation are in En-DPD-HT and
En-DPD-˜⇥. Both treatments provide insights into ways in which the very simple basin calculation
defined here might be modified.

For En-DPD-HT the index predicts decreased cooperation relative to the pivot, as the basin calcu-
lation is p?(SCD,MCD) = 0.366. In contrast, this is the treatment with the most cooperative out-
comes, where 87.1 percent of supergames have high-state cooperation in period two. One reason
for this treatment being an outlier in the figure is that subjects in this treatment coordinate on much-
harsher punishments than the basin calculation allows for. Given a deviation, subjects in En-DPD-
HT respond with a switch to the worst-case MPE MDD (rather than the modeled MCD response).

46In this way, we are more conservative in ascribing behavior as cooperative, as a player may have been cooperative
in period one, but was defected on. Our behavior measure q̂� only incorporates cooperation with a consistent path up
to the predicted point.
47While in some treatments the same basin calculation between SCD and MCD is used (in particular En-DPD-CC,
En-DPD-HT and En-DPD-⇥̃) in others the basin calculation has to change. For instance, though the strategies over
which selection is calculated stay the same in En-DPD-X the riskiness of coordination on SCD is influenced by the
second-period shock x2. For negative values of x2, the index is higher indicating that cooperation is less likely, while
the opposite happens for positive values of x2. In Figure 2 we aggregate the shocks into three categories (x2  �3,
�3 < x2 < 3, and 3  x2), and plots the basin-behavrior pairs. For Ex-DPD the basin calculation shifts to account for
changes in both the MPE and best-case symmetric SPE. The MPE prediction in this game shifts to MDD because of
the exogenous transitions. Additionally, SDD is not an SPE here, and our basin calculation calls for the best symmetric
SPE. Instead we use the symmetric trigger that supports cooperation in low and defection in high with an MDD trigger
on any deviation (call this strategy XDD). In the Ex-SPD treatment where the low state is initially selected the basin
calculation is the standard infinitely-repeated PD game calculation p? (SD,MD). Finally, in three treatments the best-
symmetric SPE is the best-case MPE, in which case the basin for the MPE is the full set of beliefs, with measure
one. This is true for our two DCP treatments (which have identical rates of high-state cooperation in round two, so
the plotted data-points are coincident) and the Ex-SPD supergame that starts in the high state. Additionally, for the
Ex-DPD and Ex-SPD games, coordination issues are resolved in round one, so Figure 2 reflects this with q̂� reflecting
the period-one cooperation rate.
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The basin calculation for cooperation relative to this worst-case MPE is p?(SDD,MDD) = 0.071,
and so the treatment would be much less of an outlier. A desirable modification to our simple
basin calculation might initially compare coordination across SCD, SDD, MCD and MDD and dis-
cern that the p?(SDD,MDD) comparison was the most relevant margin, thereby eliminating the
best-case MPE MCD.

48

Our second outlier is En-DPD-˜⇥, where the basin is p?(SCD,MCD) = 0.246, which is identical to
the pivot’s basin by construction. But, as detailed in Section 6, the additional endogenously reach-
able states lead to greater subject pessimism at the very start of the game, and less coordination on
cooperative strategies. This can be seen in Figure 2 with the fall in high-state cooperation in round
two from 56 percent in the pivot to 43.3 percent in En-DPD-˜⇥. This suggests that as the number
of endogenous states increases coordination on cooperation is more demanding, which is an aspect
that is not currently captured by our index.49 Future research may help pin down more-general
indices that incorporate the effects of richer state complexity on coordination.

8. CONCLUSION

Our paper explores a set of nine dynamic games under an infinite-time horizon. While many
applications of dynamic games focus on Markov-perfect equilibria, our results suggest that the
selection of state-dependent strategies depends on features of the game. Our core treatment is a
simple two-state extension of the infinitely repeated prisoner’s dilemma, and we find behavior that
is conceptually closer to the experimental literature on repeated games than the theoretically focal
MPE assumption. Most behavior is consistent with history-dependent strategies that aim to achieve
greater efficiency than the MPE prediction.

Our treatments also allow us to identify conditions under which Markov play may become more
prominent. First, we find that the MPE prediction is more frequent in games where coordination
on history-dependent strategies is harder. This happens as we weaken the strategic externalities
through changes to the dynamics and stage game payoffs, and as we decrease the focality of sym-
metric history-dependent outcomes. Second, we do find that changes to the complexity of the
state-space can lead to breakdowns of cooperation. Though small with respect to the frequency
strategies are initially selected, in the long-run the effect is more pronounced, as many more su-
pergames are miscoordinated through greater variation in strategic choices. This finding might help

48One reason for a change in focus might also be changes to the individually rational action in the high state for
En-DPD-HT.
49Where the basin calculation in En-DPD-⇥̃ has all strategic uncertainty realized in period two, there are higher-
powered coordination challenges in the very high state. To see this, if we started the En-DPD-⇥̃ game in the very-high
state, we would get the much-larger MPE basin p?(SCD,MCD; ✓1 = vH) = 0.889. Richer dynamic games may have
ongoing strategic uncertainty if the game is constantly entering new states, which may lead to an unraveling towards
the MPE.

34



explain the greater selection of symmetric MPE in other large state-space experiments on dynamic
games (Battaglini et al., 2012, 2014; Vespa, 2015), where increased strategic uncertainty from the
many possible future states pushes the game towards state-dependent MPE behavior. However,
when the state-space is increased through exogenous, non-persistent shocks (which are common
in many industrial organization applications) we find a small increase in history dependence. This
is also is consistent with other experimental games with a larger state-space (see Salz and Vespa,
2015).

While our results allow us to bridge earlier findings in repeated and dynamic games, our relatively
large number of treatments illustrate a richness in subject behavior. That more-efficient history-
dependent strategies emerge in our lab data suggests researchers should be somewhat wary of
making Markov assumptions. If incentive-compatible strategies with Pareto superior outcomes are
quickly learned and deployed by undergraduate students matched anonymously with one another
in the lab, it is hard to believe they are will not be present in the field, where participants engage in
longer interactions and with more channels for coordination. Future research can further explore
and pin down what drives selection, while many other first-order questions remain open. For
instance, in dynamic game environments little is known about how equilibrium selection responds
to the importance of the future (via the discount factor). Similarly, greater experimentation over
the size of the action space, or the number of other players may help us understand the role of
strategic uncertainty in equilibrium selection.

REFERENCES

Acemoglu, Daron and James A Robinson, “A theory of political transitions,” American Economic Review,
2001, pp. 938–963.

Aghion, Philippe, Christopher Harris, Peter Howitt, and John Vickers, “Competition, imitation and
growth with step-by-step innovation,” The Review of Economic Studies, 2001, 68 (3), 467–492.

Bajari, Patrick, C Lanier Benkard, and Jonathan Levin, “Estimating dynamic models of imperfect
competition,” Econometrica, 2007, 75 (5), 1331–1370.

Battaglini, M. and S. Coate, “Inefficiency in Legislative Policymaking: A Dynamic Analysis,” The Amer-
ican Economic Review, 2007, pp. 118–149.

, S. Nunnari, and T. Palfrey, “The Dynamic Free Rider Problem: A Laboratory Study,” mimeo,
2014.

Battaglini, Marco, Salvatore Nunnari, and Thomas R Palfrey, “Legislative bargaining and the dynamics
of public investment,” American Political Science Review, 2012, 106 (02), 407–429.

Bergemann, D. and J. Valimaki, “Dynamic common agency,” Journal of Economic Theory, 2003, 111 (1),
23–48.

Bó, Pedro Dal and Guillaume R Fréchette, “The evolution of cooperation in infinitely repeated games:
Experimental evidence,” The American Economic Review, 2011, 101 (1), 411–429.

Coles, M.G. and D.T. Mortensen, “Dynamic Monopsonistic Competition and Labor Market Equilibrium,”
mimeo, 2011.

35



Dal Bó, Pedro and Guillaume R Fréchette, “On the Determinants of Cooperation in Infinitely Repeated
Games: A Survey,” 2014.

Dutta, P.K. and R. Radner, “Population growth and technological change in a global warming model,”
Economic Theory, 2006, 29 (2), 251–270.

Ericson, R. and A. Pakes, “Markov-perfect industry dynamics: A framework for empirical work,” The
Review of Economic Studies, 1995, 62 (1), 53.

Fréchette, Guillaume R and Sevgi Yuksel, “Infinitely Repeated Games in the Laboratory: Four Perspec-
tives on Discounting and Random Termination,” February 2013. NYU working paper.

Fudenberg, D., D.G. Rand, and A. Dreber, “Slow to anger and fast to forgive: Cooperation in an uncertain
world,” American Economic Review, 2010.

Hörner, J. and L. Samuelson, “Incentives for Experimenting Agents,” mimeo, 2009.
Kloosterman, A., “An Experimental Study of Public Information in Markov Games,” mimeo, 2015.
Laibson, D., “Golden Eggs and Hyperbolic Discounting,” Quarterly Journal of Economics, 1997, 112 (2),

443–477.
Mailath, George J and Larry Samuelson, Repeated games and reputations, Vol. 2, Oxford university

press Oxford, 2006.
Maskin, Eric and Jean Tirole, “A theory of dynamic oligopoly, I: Overview and quantity competition with

large fixed costs,” Econometrica: Journal of the Econometric Society, 1988, pp. 549–569.
and , “Markov perfect equilibrium: I. Observable actions,” Journal of Economic Theory,

2001, 100 (2), 191–219.
Rubinstein, A. and A. Wolinsky, “Decentralized trading, strategic behaviour and the Walrasian outcome,”

The Review of Economic Studies, 1990, 57 (1), 63.
Saijo, T., K. Sherstyuk, N. Tarui, and M. Ravago, “Games with Dynamic Externalities and Climate

Change Experiments,” mimeo, 2014.
Salz, Tobias and Emanuel Vespa, “Estimating Dynamic Games of Oligopolistic Competition: An Evalua-

tion in the Laboratory,” 2015. UCSB working paper.
Sherstyuk, Katerina, Nori Tarui, and Tatsuyoshi Saijo, “Payment schemes in infinite-horizon experi-

mental games,” Experimental Economics, 2013, 16 (1), 125–153.
Vespa, Emanuel, “An Experimental Investigation of Strategies in the Dynamic Common Pool Game,” 2015.

UCSB working paper.

36



En
-D
PD

En
-D
PD

-C
C
En

-D
PD

-H
T

Ex
-D
PD

Ex
-S
PD

En
-D
C
P-
M

En
-D
C
P-
E

En
-D
PD

-X
En

-D
PD

-Θ˜
L

H
L

H
L

H
L

H
L

H
L

H
L

H
L

H
v
L

L
H

v
H

01

FI
G

U
R

E
3.

C
oo

pe
ra

tio
n

R
at

es
,b

y
tre

at
m

en
t/s

ta
te

/s
up

er
ga

m
e-

bl
oc

k
N

ot
e:

C
oo

pe
ra

tio
n

ra
te

s
ar

e
gi

ve
n

in
bl

oc
ks

of
fiv

e
su

pe
rg

am
es

,w
he

re
th

e
fir

st
ba

ri
n

ea
ch

se
qu

en
ce

ill
us

tra
te

s
co

op
er

at
io

n
ra

te
s

in
su

pe
rg

am
es

1–
5,

th
e

se
co

nd
su

pe
rg

am
es

6–
10

,a
nd

th
e

la
st

su
pe

rg
am

es
11

–1
5.

C
irc

ul
ar

po
in

ts
in

di
ca

te
th

e
co

op
er

at
io

n
ra

te
in

pe
rio

d
on

e
of

th
e

su
pe

rg
am

e
fo

rL
ow

st
at

es
(a

ll
su

pe
rg

am
es

),
an

d
pe

rio
d

tw
o

fo
rt

he
hi

gh
st

at
es

(o
nl

y
th

os
e

su
pe

rg
am

es
w

hi
ch

en
te

rt
he

hi
gh

st
at

e
in

pe
rio

d
tw

o)
,e

xc
ep

tf
or

Ex
-S

PD
,w

he
re

bo
th

ci
rc

le
s

sh
ow

s
sh

ow
pe

rio
d

on
e

co
op

er
at

io
n.

A
rr

ow
s

po
in

tt
o

th
e

fin
al

co
op

er
at

io
n

ra
te

(la
st

tw
o

pe
rio

ds
in

a
su

pe
rg

am
e)

in
ea

ch
st

at
e.

37



TA
B

L
E

5.
St

ra
te

gy
Fr

eq
ue

nc
y

Es
tim

at
io

n
M

et
ho

d
O

ut
pu

t:
La

st
Fi

ve
Su

pe
rg

am
es

St
ra

te
gi

es
En

-D
PD

En
-D

PD
-C

C
En

-D
PD

-H
T

Ex
-D

PD
Ex

-S
PD

Ex
-S

PD
En

-D
C

P-
M

En
-D

C
P-

E
En

-D
PD

-X
En

-D
PD

-˜ ⇥
(✓

=
L

)
(✓

=
H

)
M

ar
ko

v
M

C
C

0.
11

7
0.

17
3?

?
0.

25
1?

?
0.

00
0

0.
11

2?
0.

00
9

0.
06

8
0.

09
2

0.
34

7?
?
?

0.
02

3
(0

.0
72

)
(0

.0
76

)
(0

.1
16

)
(0

.0
13

)
(0

.0
60

)
(0

.0
14

)
(0

.0
53

)
(0

.0
59

)
(0

.0
91

)
(0

.0
44

)
M

D
D

0.
02

4
0.

03
9

0.
02

3
0.

58
2?

?
?

0.
24

6?
?
?

0.
52

3?
?
?

0.
07

7
0.

04
8

0.
02

7
0.

16
6⇤

(0
.0

30
)

(0
.0

39
)

(0
.0

17
)

(0
.1

45
)

(0
.0

82
)

(0
.0

98
)

(0
.0

61
)

(0
.0

38
)

(0
.0

34
)

(0
.0

87
)

M
C
D

0.
21

2?
0.

05
7

0.
04

1
0.

07
3?

0.
27

9?
0.

65
1?

?
?

0.
13

8?
0.

16
7⇤

(0
.1

27
)

(0
.0

63
)

(0
.0

33
)

(0
.0

41
)

(0
.1

58
)

(0
.1

81
)

(0
.0

81
)

(0
.0

97
)

M
D
C

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
06

3
0.

00
0

0.
00

0
0.

00
0

(0
.0

03
)

(0
.0

10
)

(0
.0

26
)

(0
.0

00
)

(0
.0

43
)

(0
.0

02
)

(0
.0

15
)

(0
.0

38
)

H
ist

or
y-

de
pe

nd
en

t
S
D
D

0.
10

6
0.

22
7?

0.
47

9?
?
?

0.
18

0?
0.

18
4?

0.
07

8
0.

03
9

0.
00

0
0.

06
9

0.
26

5⇤
⇤⇤

(0
.0

95
)

(0
.1

19
)

(0
.1

33
)

(0
.1

09
)

(0
.1

02
)

(0
.0

61
)

(0
.0

48
)

(0
.0

09
)

(0
.0

66
)

(0
.0

76
)

S
C
D

0.
20

6?
?

0.
07

5
0.

00
0

0.
04

5
0.

07
0

0.
08

8?
0.

24
5?

?
0.

10
6

(0
.0

85
)

(0
.0

67
)

(0
.0

43
)

(0
.0

33
)

(0
.0

57
)

(0
.0

52
)

(0
.1

10
)

(0
.0

65
)

T
f
T

0.
25

4?
?
?

0.
30

4?
?
?

0.
18

2
0.

03
2

0.
32

4?
?
?

0.
13

1?
0.

13
9?

0.
06

9
0.

08
9

0.
12

9
(0

.0
82

)
(0

.0
93

)
(0

.1
25

)
(0

.0
52

)
(0

.0
80

)
(0

.0
72

)
(0

.0
80

)
(0

.0
78

)
(0

.0
63

)
(0

.0
88

)
S
T
f
T

0.
02

3
0.

01
6

0.
00

0
0.

06
5

0.
13

4
0.

25
8

0.
00

0
0.

00
0

0.
02

1
0.

00
0

(0
.0

27
)

(0
.0

20
)

(0
.0

02
)

(0
.0

62
)

(0
.0

08
)

(0
.0

02
)

(0
.0

31
)

(0
.0

03
)

A
D
D

0.
05

9
0.

04
6

0.
02

4
0.

02
2

0.
16

4
0.

05
1

0.
02

9
0.

10
1

(0
.0

39
)

(0
.0

41
)

(0
.0

29
)

(0
.0

43
)

(0
.1

11
)

(0
.0

50
)

(0
.0

34
)

(0
.0

67
)

A
C
D

0.
00

0
0.

06
5

0.
00

0
0.

00
0

0.
10

2
0.

00
0

0.
03

5
0.

04
3

�
0.

64
3?

?
?

0.
52

9?
?
?

0.
36

4?
?
?

0.
34

7?
?
?

0.
53

2?
?
?

0.
45

1?
?
?

0.
70

6?
?
?

0.
52

6?
?
?

0.
63

5?
?
?

0.
66

9?
?
?

(0
.0

58
)

(0
.0

71
)

(0
.0

41
)

(0
.0

36
)

(0
.0

48
)

(0
.0

51
)

(0
.0

63
)

(0
.0

80
)

(0
.0

89
)

(0
.0

62
)

�
0.

82
6

0.
86

9
0.

94
0

0.
94

7
0.

86
8

0.
90

2
0.

80
5

0.
87

0
0.

82
8

0.
81

7

N
ot

e:
B

oo
ts

tra
pp

ed
st

an
da

rd
er

ro
rs

in
pa

re
nt

he
se

s.
Le

ve
lo

fS
ig

ni
fic

an
ce

:?
?
?
-1

pe
rc

en
t;

?
?
-5

pe
rc

en
t;

?
-1

0
pe

rc
en

t.

38



0 1

0

1

0 1

0

1

NaN

θt=Low

θ t
=H
ig
h

5% 12%

11%

9%

10%

17%

(A) En-DPD

0 1

0

1

0 1

0

1

NaN

θt=Low
θ t
=H
ig
h

9%

13%

10%

33%

(B) En-DPD-CC

0 1

0

1

0 1

0

1

NaN

θt=Low

θ t
=H
ig
h

6%

70%

(C) En-DPD-HT

0 1

0

1

0 1

0

1

NaN

θt=Low

θ t
=H
ig
h

55% 9% 15%

(D) Ex-DPD

0 1

0

1

0 1

0

1

NaN

θt=Low

θ t
=H
ig
h

40%

6%

6%

9% 5% 8%

(E) Ex-SPD

0 1

0

1

0 1

0

1

NaN

θt=Low

θ t
=H
ig
h

7%

5% 6% 16%

8%

12%

5%

(F) En-DCP-M

0 1

0

1

0 1

0

1

NaN

θt=Low

θ t
=H
ig
h

41%

11%

14%

6%

(G) En-DCP-E

0 1

0

1

0 1

0

1

NaN

θt=Low

θ t
=H
ig
h

11%

7%

9%

13%

30%

(H) En-DPD-X

0 1

0

1

0 1

0

1

NaN

θt∈{vLow,Low}

θ t
∈{
vH
ig
h,
H
ig
h}

5% 7% 8%

8%

11%

11%

6%

6%

(I) En-DPD-⇥̃

FIGURE 4. Histories (last five supergames)
Note: The unit of observation is a history: the choices of a subject in a supergame. The data are represented in each
Figure on an 11 by 11 grid, so that for example, a cooperation rate of 97 percent in one state is represented as 100
percent.
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APPENDIX A. SUPPLEMENTARY MATERIAL: FIGURES AND TABLES

Tables 6 and 7 present the stage games for the En-DPD-CC and En-DPD-X treatments, respec-
tively.

TABLE 6. En-DPD-CC Stage Games

✓=Low ✓=High
2: 2:

C D C D

1: C 100,100 30, 125 1: C 200, 200 130, 250
D 125, 30 60,60 D 250, 130 190, 190

TABLE 7. En-DPD-X Stage games

✓ = (Low, x) ✓ = (High, x)
2: 2:

C D C D

1: C 100+x,100+x 30-x, 125+x C 200+2x, 200+2x 130+2x, 280-2x
D 125-x, 30+x 60-x,60-x D 280-2x, 130+2x 190-2x, 190-2x
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TABLE 8. Cooperation rates by state (Last 5 supergames)

Treatment ✓t =Low ✓t =High
Mean (std. err) Mean (std. err)

En-DPD 0.796 (0.035) – 0.489 (0.045) –
En-DPD-CC 0.794 (0.036) 0.674 (0.042) (? ? ?)
En-DPD-HT 0.832 (0.050) 0.979 (0.010) (? ? ?)

Ex-DPD 0.189 (0.059) (? ? ?) 0.012 (0.007) (? ? ?)
Ex-SPD† 0.406 (0.062) (? ? ?) 0.079 (0.024) (? ? ?)

En-DCP-M 0.638 (0.047) (? ? ?) 0.245 (0.041) (? ? ?)
En-DCP-E 0.946 (0.021) (??) 0.187 (0.047) (? ? ?)
En-DPD-X 0.856 (0.036) (?) 0.635 (0.055) (? ? ?)

En-DPD-˜⇥ 0.453 (0.033) (? ? ?) 0.254 (0.032) (? ? ?)

Note: Figures reflect predicted cooperation rates for the median subject (subject random-effect at zero) attained via
a random-effects probit estimate over the last five cycles with just the state as a regressor. Statistical significance is
given for differences with the pivot En-DPD, except for: †- Statistical significance here given relative to Ex-DPD

Further analysis at the aggregate level. Table 8 presents tests on whether the cooperation rates
by state and treatment in Figure 3 are statistically different from the pivot. The predicted co-
operation rates are obtained after estimating a random-effects probit with a dummy variable for
cooperation in the left-hand-side, and a constant and a state dummy on the right-hand side.

Table 9 performs a robustness check on the estimates of 8. The table reports the estimates of a linear
probability model with the same dependent variable, but an additional set of controls and standard
errors that are clustered at the session level. Each treatment presents estimates relative to the pivot,
so that the Treatment dummy takes value 1 if the observation corresponds to that treatment and 0 if
it belongs to the pivot. There is also a state dummy and the interaction between state and treatment
dummies. Finally, there is a set of dummy variables for the included supergames.

Tables 12 and 13 report the most frequently observed evolution of the state and sequences of
actions, respectively.
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TABLE 10. Differences between initial and subsequent period Cooperation Rates

Treatment ✓ =Low ✓ =High
�Pr {C} (Std. Err) �Pr {C} (Std. Err)

En-DPD 0.498 (0.075) (? ? ?) 0.213 (0.046) (? ? ?)
En-DPD-CC 0.520 (0.066) (? ? ?) 0.135 (0.044) (? ? ?)
En-DPD-HT 0.867 (0.090) (? ? ?) 0.006 (0.014)

Ex-DPD 0.124 (0.050) (? ? ?) 0.049 (0.022) (??)
Ex-SPD 0.286 (0.068) (? ? ?) 0.040† (0.021) (?)

En-DCP-M 0.421 (0.053) (? ? ?) 0.069 (0.039) (?)
En-DCP-E 0.084 (0.039) (??) 0.040 (0.034)
En-DPD-X 0.256 (0.065) (? ? ?) 0.256 (0.055) (? ? ?)

En-DPD-˜⇥ 0.421 (0.041) (? ? ?) 0.219 (0.030) (? ? ?)

Note: Figures reflect predicted marginal effect �Pr {C}=Pr{C| Initial Period, ✓}�Pr{C|Subsequent Period, ✓} for
the initial play dummies for the median subject (subject random effect at zero) attained via a random-effects probit
estimate over the last five cycles (regressors are state dummies and dummies for Low & Period One and High & Period
2;. Statistical significance is relative to zero. †-For Ex-DPD we define the initial level with a High & Period 1 dummy.
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Robustness of the SFEM estimates. The estimates reported in Table 14 result when the strategies
included correspond to those that capture most behavior in infinitely repeated prisoner’s dilemma
experiments. For each treatment we include always cooperate (MCC), always defect (MDD), the
best Markov perfect equilibrium whenever it differs from MDD, a trigger strategy with reversion
to the best Markov perfect equilibrium and Tit for Tat. Comparing the measure of goodness-of-fit
(�) to the estimates in Table 5 we observe only a minor reduction. This suggests that this simple
set of strategies can rationalize our data to a large extent.

For treatments where the efficient outcome can be supported with ADD or ACD Table 15 reports
the estimates using the two versions of each strategy depending on whether the strategy starts
by selecting C or D the first period the game is at the high state (for more details in footnote
19). In En-DPD the estimates remain largely unchanged except that the frequency of strategy that
starts by cooperating and punishes with MCD after a deviation, which we call AC

CD, is above 20%.
Comparing to the estimates in Table 5 we verify that there is a reduction of similar magnitude in
the estimate of SCD. This highlights the difficulty of identifying a strategy such as AC

CD from SCD:
both strategies prescribe to cooperate in high if there are no previous deviations and would coincide
from then on if there is no coordination on alternation in the second period in high. A similar effect
(albeit smaller) is present for En-DPD-˜⇥. Other than these discrepancies the estimates reported in
Table 5 remain largely unchanged.

Table 16 presents estimates when we expand the set of Markov strategies in treatments where we
change the size of the state-space. To explain the extra strategies included for En-DPD-X, consider
first Figure 5. The figure presents the cooperation rates in low and in high in panels (A) and (B),
respectively. Supergames are grouped in blocks of five and the state-space X is divided in three
parts: lower than or equal to �3, between �3 and 3, and higher than or equal to 3. Panel (A)
shows that the cooperation rate in low is largely unaffected by the choice of x. However, for high
state in panel (B) there is a positive effect on cooperation as values of x are higher. Guided by
this figure we included two extra strategies in our estimation Mx

CCC,DCC and Mx
CCC,DDC . The

supra-script indicates that it is a Markov strategy that conditions on x. The first (last) three values
of the subindex indicate the action prescribed in the low (high) state for each of the three elements
in the partition of X . Both strategies prescribe the choice of C in the low state for all values of
x. This is consistent with the high cooperation rates in panel (A) of Figure 5. In the high state,
strategy Mx

CCC,DCC prescribes to defect only if the value of x is lower than or equal to �3, while
Mx

CCC,DDC would also defect if x is between �3 and 3. We also include trigger strategies that
aim to implement joint cooperation, but use either of these strategies as punishments (Sx

CCC,DCC ,
Sx
CCC,DDC ).

The estimates in Table 16 are significant a only in the case of Mx
CCC,DCC , reaching approximately

one-fifth of the mass. Relative to the estimates in Table 5, the reduction is coming from MCC and
47



SCD. The inclusion of these strategies, however, only leads to a minor improvement in the measure
of goodness-of-fit, from 0.828 to 0.846.

For En-DPD-˜⇥, we explored sequences of actions and states (see Tables 12 and 13) that can be
rationalized with Markov strategies that do not prescribe the same choice for vH and H , and vL

and L. We include two additional strategies. MCDDD, which cooperates only in vL and defects
otherwise and MCCCD that only defects in vH . The estimates in Table 16 show that both strategies
capture approximately 10 percent of the mass and are statistically significant. The goodness-of-fit
measure relative to Table 5 increases by 6 points. The strategy that suffers the largest loss of mass
(relative to Table 5) is MDD, which is now at zero.
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TABLE 16. SFEM Output: Additional Strategies in Complexity Treatments

Strategies En-DPD-X En-DPD-˜⇥
Markov

MCC (MCCCD) 0.253??? 0.000
(0.078) (0.041)

MDD (MCDDD) 0.027 0.166⇤

(0.034) (0.088)
MCD (MCCDD) 0.133? 0.176⇤

(0.071) (0.092)
MDC (MCDCD) 0.000 0.000

(0.013) (0.039)
MCCCC 0.059

(0.077)
MDDDD 0.000

(0.038)
Mx

CCC,DCC 0.203??

(0.098)
Mx

CCC,DDC 0.002
(0.048)

History-dependent
SDD (SCDDD) 0.073 0.266⇤⇤⇤

(0.062) (0.075)
SCD (SCCDD) 0.162 0.109⇤

(0.119) (0.065)
Sx
CCC,DCC 0.000

(0.019)
Sx
CCC,DDC 0.000

(0.020)
TfT 0.063 0.091⇤

(0.056) (0.055)
sTfT 0.015 0.000

(0.024) (0.003)
ADD (ACDDD) 0.032 0.102

(0.036) (0.066)
ACD (ACCDD) 0.038 0.031

� 0.588??? 0.645???

(0.070) (0.054)
� 0.846 0.825

Note: Bootstrapped standard errors in parentheses. Level of Significance: ???-1 percent; ??-5 percent; ?-10 percent.
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(A) Low state, period one

(B) High state, period two

FIGURE 5. Cooperation rates in En-DPD-X
Note: Running a random-effects probit estimates, for the low state in period one, only the difference between cooper-
ation for x  �3 and x � 3 is significant (95 percent confidence, for both supergames 6–10 and for 11–15). For the
high-state cooperation in period two, the difference between cooperation for x  �3 and x � 3 is always significantly
different (above 99 percent confidence, each block of five).
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