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Abstract

We solve in closed form the optimal investment strategy of an infinitely lived risk neutral hedge

fund manager compensated by a management fee and a high water mark (HWM) contract. The

fraction of asset under management (AUM) allocated in equity is a convex increasing function

of the distance to the HWM as moving away from the HWM is increasingly bad news both for

management and incentive fees. This convexity effect is enhanced by the size of the incentive fee

rate. The higher the management fee rate, the larger the risk exposure, as the revenue insurance

effect gets magnified. Frequently beating by a small amount the HWM is optimal as it mitigates

the ratchet feature of the HWM. Data seem to support the theoretical predictions of the model:

returns’ volatility is strongly related to distance to the HWM: being 20% underwater is associated

with an increase of 192 bps in the ex-post returns’ volatility. Also consistent, the time elapsed

between hits and the extent to which the fund surpasses the HWM both increase with distance to

the HWM. An extension shows that a fund termination threat reduces risk taking behavior as the

fund drifts away from the HWM, which is consistent with our empirical findings.

Journal of Economic Literature Classification Numbers: G01, G11, G23.

Keywords: High Water Mark, Management Fees, Incentive Fees, Optimum Portfolio Rules,

Ratchet Effect.

∗Tel: +56 2 2331 1642, Fax: +56 2 2331 1942; Corresponding author e-mail address: herve.roche@uai.cl (Hervé
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1 Introduction

As of the third quarter of 2016, the hedge fund industry was managing an estimated wealth of $2

98 trillion, a slight decrease compared to the pinnacle of $3.02 trillion reported in December 2014.

Hedge funds are exempt from many regulatory rules to which the financial industry in general must

abide such as, for the case of the United States, the Investment Company Act of 1940, which is an

extensive regulatory code1. Increased investment opportunities allow managers to implement more

flexible strategies and make full use of their talent to deliver profits, which should entitle them to high

rewards. Hedge fund managers’ compensation exhibits two key features: a management fee, usually, a

fraction of the assets under management (AUM) and a performance-incentive fee, typically, a fraction

of the fund profits is paid to the fund manager when profits exceed a target value, the high water

mark (HWM). The incentive fee intends to align the interests of managers with those of investors:

the HWM aims at ensuring that the fund managers’ reward is commensurate to performances while

keeping track of the history of the fund profits, more specifically, its all time high value ever reached.

It can be adjusted to incorporate a minimum return required on the fund, for instance to account for

inflation as well as each time some fund inflows or outflows take place. The HWM is a specific feature

of the hedge fund industry2: The standard remuneration for hedge funds is so called the “2/20-rule”,

2% per year of the AUM3.

In this paper, we study the optimal investment strategy chosen by an infinite lived risk neutral

fund manager who earns a management fee as well as a performance fee as previously described. Our

baseline model is essentially an extension of the work of Panageas and Westerfield (2009) that accounts

for the impact of a management fee rate. In practice, the management fee plays an important role: it

will be very difficult for a fund to operate on a daily basis by only relying on bumpy and infrequent

hikes in income earned when the HWM is hit4. Our motivation is twofold. First we are interested in

the combined effect of a management and a performance fees on the level of risk exposure of the fund,

in particular how the latter varies with the distance to the HWM, and, on the size of the incentive fee

earned each time the HWM is surpassed. Second, using data from the Hedge Fund Research database

of monthly observations of returns of both active and liquidated hedge funds over the 1976-2013 period,

we test the empirical implications of our model.

Our main result is to show an increasing convex relationship between risk exposure of the AUM

and the distance to the HWM. The farther away the fund drifts from the HWM, the smaller the size

1The Security and Exchange Commission (SEC) limits the use of short sales, derivative contracts, asset concentration
for mutual funds in an attempt to protect investors from high risk investment strategies.

2Eighty four pecent of the funds tracked by the HFR Database have a HWM provision.
3The fee structure of the typical fund in our data is 1.479 % / 18.309 % and 20 percent of profits in excess of the

HWM. Other common fund fee structures include: “1/50-rule”.
4Lan, Wang and Yang (2013) point out that management fees contribute to the majority of total management

compensation and report calibrations in which three quarters of the fund manager’s compensation are due to management
fees. Calibrations performed in Goetzmann, Ingersoll and Ross (2003) reveal that total lifetime fees could represent 30
up to percent of the value of the AUM, with nearly two third of the cost being due to the management fee.
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of the management fee earned and the present value of the incentive fee, which triggers a rise in risk

taking behavior by the manager. The economic magnitude is of the effect in the data is large: being

20% underwater is associated with 192 bps increase in the standard deviation of the next 12-month

returns or 16.4%.

Regarding the performance fee rate, we find that it has a negative impact on risk taking as the

fund manager looks forward and intends to mitigate the ratchet effect of the HWM. The intuition

for this result is straightforward: ceteris paribus, when the incentive fee is large, the fund manager

chooses a small step strategy that consists in reducing the fund volatility when approaching the HWM:

As a result, the HWM is pushed up by a small amount but more often. As stressed in Panageas and

Westerfield (2009), the assumption of an infinite horizon is key. Although we do not find this in the

data, model and empirical findings coincide to assert that an increase in the performance rate enhances

the positive relationship between risk exposure and distance to the HWM.

Numerical simulations reveal that an increase in the management fee rate triggers a more aggressive

investment strategy. The intuition is straightforward: A higher management fee rate allows the

fund manager to insure part of her compensation, which fosters a risk seeking behavior. The data

corroborates this intuition. Then, we compute the expected time until the HWM is reached as a

function of the distance to the HWM. It is found to be increasing, validating the intuition that the

farther away of the HWM, the longer it takes to collect the next incentive fee. We find evidence

consistent with the implication that an increase in the incentive fee rate leads to a smaller AUM

volatility, which lowers the expected time.

The extent to which the fund surpasses its HWM is smaller when the fund is close to the high-water

mark, as it will be optimal to beat the high-water mark frequently by a small amount to mitigate the

ratchet effect. The data supports this prediction. Now, those considerations become less important

as the fund gets farther away, and especially when the management fee rate is higher (insurance) and

the performance fee rate is smaller (future cost of surpassing the HWM). We find evidence consistent

with the latter implication.

We also analyze the impact of the fee structure on the lifetime compensation of the manager and

find a negative impact of both management and incentive fees on the fund manager’s welfare as the

growth of the AUM is thwarted. We provide a closed form expression for the manager’s revenue

decomposition. Numerical simulations for the baseline model tend to show that the incentive fee is

the main source of revenue for the manager. Our data set indicates that as around 48.5% of the

revenue of fund managers come from incentive fees, while for instance in Lan, Wang and Yang (2013)

this ratio would be around one third (depending on distance).

The closest paper to our baseline model is Drechsler (2014) in which the fund manager has the

option to walk away. A solution is derived by assuming that the management fee is proportional to

the HWM rather than being proportional to the value of the AUM. Under such an approximation,

the optimal investment strategy has an identical pattern to that in absence of management fee. Our

model differs from Dreschler (2014) in several dimensions: first of all, a management fee is seen from

the client point of view as a loss, so the HWM is not adjusted downward. Second, we derive an
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exact analytical solution that allows us to uncover some interesting insights on the effects the option

like incentive fee contract on the optimal investment strategy and identify the distinct impacts of the

management and performance fees on risk exposure.

At the theoretical level, Goetzmann, Ingersoll and Ross (2003) use a contingent claim approach

to derive the implied market value of the lifetime fees earned by a manager who has no discretion

on portfolio allocations. They find that a significant proportion of managers compensation can be

attributed to the incentive fee, in particular for high volatility asset funds for which high manager

skills are required. Janeček and Ŝırbu (2011) examine a similar problem while allowing for endogenous

withdraws from the fund. Guasoni and Oblój (2015) study the case of a CRRA preference fund

manager who maximizes the long term certainty equivalent of the cumulated fees paid by the fund.

The fee structure is identical to the one considered in our paper; earned fees are required to be

invested in the riskfree money market account. The optimal investment strategy consists in allocating

a constant fraction of the AUM in the risky asset, whose level depends on the management fee rate

and fund manager’s risk aversion5.

This paper is also related to a fairly recent but growing literature on portfolio allocations under

wealth performance relative to an exogenous benchmark such as in Browne (1999) and Tepla (2001)

or subject to growth objectives required by the decision maker as in Hellwig (2004). In Carpenter

(2000), the fund manager is compensated with a call option on the wealth process with a benchmark

index as strike price. As in Ross (2004), the author shows that the option compensation does not

necessarily lead to more risk seeking. In a similar setting, Buraschi, Kosowski, and Sritrakul (2014)

obtain that investment in the risky asset decreases as the AUM approaches the HWM and exceeds

the latter up to an extent after which it starts to increase.

An extension to the baseline model introduces an early termination by the investor should the AUM

experience a sufficiently large drawdown, measured as fraction of the HWM6. Essentially, the presence

of the liquidation floor introduces a put option component into the optimal investment strategy in

order to restrain and hedge drawdowns of the AUM. Although significantly more complex than the

baseline model, we are still able to solve the problem in closed form. We find that the impact on the

optimal investment strategy is significant. The closer the AUM gets to the minimum floor, the higher

the fund manager’s lifetime risk aversion, which curbs down risk exposure. Our empirical findings

are consistent with this latter result: risk in funds with high probability of being liquidated is lower

and increases less rapidly with the distance to HWM. Depending of the parameters of the model,

the optimal fraction of AUM invested in risky asset is either increasing in wealth or hump shaped.

The former pattern always prevails when the management fee is small and the liquidation floor is

high. Conversely, we observe the latter pattern for sufficiently large management fee rate and low

5In a companion paper, Guasoni and Wang (2015) analyze the optimal investment strategies of a risk averse fund
manager in charge of either a mutual fund (no HWM) or a hedge fund (with HWM) who is free to invest her own wealth
in equity. Investing a constant fraction of the AUM in the stock is still optimal whereas the fund manager shall invest
her cumulative earned fees into the riskfree asset and a constant fraction of the rest of his own asset into the stock.

6Grossman and Zhou (1993) argue that when “leverage is used extensively, [...] an essential aspect of the evaluation
of investment managers and their strategies is the extent to which large drawdowns occur. It is not unusual for the
managers to be fired subsequent to achieving a large drawdown (typically above 25 percent).”
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liquidation floor, which indicates that as soon as the termination threat is small enough as the AUM

has moved away from the liquidation floor, the convex like feature of the compensation scheme induces

the optimal investment strategy to exhibit excess risk taking as in the baseline model.

There exists an extensive empirical literature regarding the interplay between compensation con-

tracts with convex payoffs and risk taking behavior that focuses on hedge funds. Results are not

always consistent. Brown, Goetzmann and Park (2001) do not find evidence of excessive risk taking

behavior when below the HWM. In fact, they argue that fund managers are mainly concerned about

their reputation and future in the industry. Studying returns of more than 900 funds over the period

1988-1995, Ackermann, McEnally and Ravenscraft (1999) report that the fear of excess risk taking

behavior triggered by the incentive fee seems unfounded. Nevertheless, the incentive fee is a key

variable at explaining a risk-adjusted returns (measured by the Sharpe ratio). They also establish

a strong positive link between the management fee and the volatility of returns (agency problem).

Elton, Gruber, and Blake (2003) report that mutual funds with incentive-fees raise risk exposure after

poor performance. Aragon and Nanda (2012) find that funds that perform poorly in absolute terms,

relative to others and relative to their HWM tend to increase risk. The effect is stronger with funds

with incentive pay but is missing for funds that have HWM provision. The threat of losing AUMs

or being liquidated appears to be relevant and even change the direction of the effects. Agarwal et.al

(2002) document a convex flow-performance relation and suggest that, in addition to explicit incen-

tives, managers also face significant implicit incentives to risk taking. Since funds charging higher

incentive fees exhibit higher money flows, this would induce those to moderate their risk taking be-

havior. Buraschi et.al (2012) show that funds that have experienced large deviations from their HWM

actually reduce volatility.

In our paper, by studying the data in light of a more structured theoretical model we can uncover

the mechanism through which the various fees affect risk taking behavior of fund managers. For

instance, we point out the insurance role of the management fee. This also allows to test ancillary

implications such as the frequency of the hits, the extent to which the fund surpasses the HWM, among

others. We are able to explore in a unified empirical framework the role of distance to HWM, relative

and absolute performance, the structure of fees, the frequency and extent of HWM surpasses, and the

impact of the threat of liquidation. Our results are robust and to some extent we can accommodate

some seemingly inconsistent previous results.

The paper is organized as follows. Section 2 describes the baseline setting and contains a heuristic

derivation of the optimal solution and an analysis of its properties. Section 3 presents a verification

theorem that formally proves the validity of the heuristic solution. In section 4, we discuss an extension

of the baseline model that introduces the possibly of early termination of the fund by investors. Section

5 presents the empirical evidence. Section 6 concludes. All proofs are contained in the appendix.
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2 Baseline Model

Time is continuous. An infinitely lived7 risk neutral hedge fund manager has to optimally allocate the

AUM of her fund between a risk-free bond and a risky asset (index) in order to maximize her lifetime

compensation.

2.1 Financial Markets

There are two securities available in the financial market:

- a risk-free bond whose price B evolves according to

dBt = r̂Btdt,

where r̂ is the constant interest rate and,

- a stock index whose price S follows a geometric Brownian motion

dSt = St(µ̂dt+ σ̂dwt),

with S0 > 0, where dwt is the increment of a standard Wiener process w, µ̂ is the mean return of

the stock index S and σ̂2 is its instantaneous variance. All the stochastic processes considered in the

paper are assumed to be adapted on a common filtered probability space whose filtration is the one

induced by the observations of w.

Let x̂ and ẑ be respectively the amount of dollars invested in the riskless bond B and risky security

S, so that the wealth process Ŵ is equal to x̂+ẑ. Finally, let π denote the fraction of the AUM invested

in the risky asset.

2.1.1 AUM Dynamics and High Watermark

Let cI > 0 denote the (constant) withdraw rate by the investor from the fund. For λ > 0, define

M̂t = sup
0≤s≤t

max{M̂0e
(λ−cI)t, Ŵse

(λ−cI)(t−s)}.

λ is the (minimum) growth rate of the returns required by the investor. Then, set zt ≡ ẑte−(λ−cI)t,Wt ≡
Ŵte

−(λ−cI)t and Mt ≡ M̂te
−(λ−cI)t. Observe that

Mt = sup
0≤s≤t

{M0,Ws; 0 ≤ s ≤ t},

and

dM̂t = (λ− cI)M̂tdt+ e(λ−cI)tdMt.

7This assumption is key for our results. Panageas and Westerfield (2009) show that within a finite horizon framework
the volatility of the fund becomes unbounded as approaching the terminal date.
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As long as dMt = 0, the HWM M̂ is growing at rate λ − cI . At each period, a management fee is

charged that is proportional to the AUM with rate cF > 0; usually cF is around 2%. Thus, total

withdraws from the fund take place at (continuous) rate c = cF + cI > 0. Whenever dMt > 0, the

fund manager earns a performance fee equal to ke(λ−cI)tdMt, with k ∈ (0, 1). In practice, k is close to

20%.

Another important force driving the dynamics of the fund is attracting new money8. Following

Lan, Wang and Yang (2013), we assume that each time the HWM is hit, this triggers some new money

inflows dÎ that are proportional to the fund profits in excess of the HWM. More specifically, at time

t,

dÎt = ie(λ−cI)tdMt,

where i > 0. Exceeding by far the HWM signals the hedge fund manager’s asset management skills.

The dynamics of the AUM process are given by

dŴt = (r̂ − c)Ŵtdt+ (µ̂− r̂)ẑtdt+ σ̂ẑtdwt − (k − i)e(λ−cI)tdMt,

so that the dynamics of discounted AUM process W are given by

dWt = (r − cF )Wtdt+ (µ− r)ztdt+ σztdwt − (k − i)dMt, (1)

with r = r̂ − λ, µ = µ̂− λ and σ = σ̂.

2.2 Hedge Fund Optimization Problem

Given 0 < W0 ≤ M0, a risk neutral hedge fund manager maximizes the expected value of her man-

agement and performance fees, i.e. her objective function F is given by

F (W0,M0) = max
ẑ

E0

[∫ ∞
0

e−(θ̂+δ)t(cF Ŵtdt+ e(λ−cI)tdMt)

]
dŴt = (r̂ − c)Ŵtdt+ (µ̂− r)ẑtdt+ σ̂ẑtdwt − (k − i)eλtdMt,

or equivalently

F (W0,M0) = max
π

E0

[∫ ∞
0

e−(θ+δ)t(cFWtdt+ kdMt)

]
(P)

s.t. dWt = (r − cF )Wtdt+ (µ− r)πtWtdt+ σπtWtdwt − (k − i)dMt,

with θ = θ̂ − λ + cI is the (adjusted) manager’s subjective time discount rate. We also impose a

transversality condition

lim
T→∞

Et

[
e−(θ+δ)(T+t)F (Wt+T ,Mt+T )

]
= 0. (2)

8Asset growth remains the focus of a majority of managers, in particular, for mid-size fund managers whereas the
largest managers have already their growth strategy in place and prefer to concentrate on talent (EY 2015).
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Termination is exogenous and follows a Poisson process with constant intensity δ that is indepen-

dent of the fund returns. We assume that θ + δ > 0.

2.2.1 Conditions for a Well-Defined Problem

Let β1 and β2 be respectively the positive and negative roots of the quadratic Qwith

Q(y) =
1

2

(µ− r)2

σ2
y2 + (θ + δ − r + cF −

1

2

(µ− r)2

σ2
)y − (θ + δ),

We make the following assumptions:

A1. Growth condition: β2(k − i) + 1 + i < 0.

This is a similar condition as in Panageas and Westerfield (2009). It can be seen as a non-Ponzi game

or tranversality condition that ensures that F (W,M) <∞ (see Appendix).

A2. µ 6= r.

When µ = r optimization problem P is ill-posed as the optimal investment strategy π∗ is unbounded;

for more details, see Panageas and Westerfield (2009).

A3. r > cF .

Condition A3.9 guaranties that investing all the wealth into the riskless asset continuously (and

infinitesimally) increases the HWM. Worth observing is the fact that r > cF implies that β1 > 1.

Finally, whenever Wt ≥Mt we have

F (Wt,Mt) = kdMt + F (Wt + (i− k)dMt,Mt + (1 + i)dMt)).

Taking a Taylor expansion and letting dMt goes to zero leads to

(k − i)F1(Mt,Mt) = k + (1 + i)F2(Mt,Mt).

This last condition ensures that the value function is continuous at Wt = Mt.

2.2.2 Primal Value Function

Due to the homogeneity of degree 1 of the hedge fund manager’ compensation function and the wealth

dynamics equation (1), the value function F is homogeneous of degree 1 so we can write

F (W,M) = Mf(u),

where u = W
M , for some smooth function f . In the rest of the paper, we shall refer to u as “the distance

to the high water mark”. Also note that clearly F1 ≥ 0, so f ′ ≥ 0. The boundary condition at u = 1

9This condition is not required for the existence of optimization problem P but nevertheless simplifies the analysis
and the exposition of the results. In the general case, results can be derived relying on the confluent hypergeometric
functions and their properties.
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is

(1 + k)f ′(1) = k + (1 + i)f(1). (3)

For u < 1, the reduced Hamilton Jacobi Bellman (HJB) equation satisfied by f is:

(θ + δ)f(u) = cFu+ (r − cF )uf ′(u) + max
π

π(µ− r)uf ′(u) +
σ2

2
π2u2f ′′(u). (4)

Assuming that f is a concave function (we prove this claim in the sequel), it follows that

π∗ = −µ− r
σ2

f ′(u)

uf ′′(u)
,

and the reduced HJB is

(θ + δ)f(u) = cFu+ (r − cF )uf ′(u)− 1

2

(µ− r)2

σ2

(f ′(u))2

f ′′(u)
. (5)

2.2.3 Dual Value Function

Let function J be a Legendre transform of value function f. Dual variables (u, x) satisfy

x = f ′(u) and u = −J ′(x),

and f(u) = J(x)− xJ ′(x) as well as J(x) = f(u)− uf ′(u). Set Λ = − cF β1β2

θ+δ > 0. The dual (reduced)

HJB satisfies:

x2J ′′(x) + [(1− β1 − β2)x− Λ]J ′(x) + β1β2J(x) = 0. (6)

The general solution of (6) is given by:

J(x) = K1H1(x) +K2H2(x),

with

H1(x) = xβ2

∫ ∞
0

e−
Λ(1+t)
x tβ1(1 + t)−β2−1dt

H2(x) = xβ2

∫ 1

0
e−

Λt
x t−β2−1(1− t)β1dt.

Some useful properties of functions H1 and H2 are provided in the Appendix.

We are looking for a solution of (6) J defined on some interval I v R+ such that: (ii) J is non-

negative on I, (ii) J ′ is negative on I, (iii) J ′′ is positive on I and, (iv) at some extremity of interval

I, both J and J ′ are equal to zero. In addition, at u = 0, the boundary condition is f(u) = 0.

Proposition 1 The reduced dual value function J is defined on the interval [x∗,∞), is decreasing and

strictly convex and is given

J(x) = − H2(x)

H ′2(x∗)
,
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where x∗ > 1 is uniquely defined by (k − i)x∗ − k + (1 + i)H2(x∗)
H′2(x∗) = 0.

Proof. See the Appendix.

Note that the strict convexity of J implies the strict concavity of f , so the interior solution for

maximization problem in (4) is justified. The definition of x∗ is implied by condition (3). The next

proposition summarizes the properties of the reduced value function f .

Proposition 2 The value function F is homogeneous of degree 1, strictly increasing in W and M

and strictly concave in W and in M . For (cF , cI , i) given, if k1 < k2, then for all u ∈ [0, 1] , we have

f1(u) > f2(u). For (c, k) given, if i1 < i2, then for all u ∈ [0, 1] , we have f1(u) < f2(u). For (k, i, cI)

given, if cF1 < cF2 , then for all u ∈ [0, 1] , we have f1(u) > f2(u). Finally, a representation of the

(optimal) reduced wealth process u ∈ (0, 1) is given by

ut = −J ′(xt),

where

xt = x0 +

∫ t

0
((θ + δ − r + cF )xs − cF ) ds− µ− r

σ

∫ t

0
xsdws, (7)

with x0 > x∗ satisfying u0 = −H′2(x0)
H′2(x∗) . Process x is mean reverting if and only if β1 + β2 < 1.

Proof. See the Appendix.

The higher either the management or the incentive fee rate, the lower the lifetime manager compen-

sation. A high fee rate reduces the growth of the AUM, in particular in an infinite horizon setting

(see Panageas and Westerfield (2009)). Overall, this overcomes the positive effect for the manager of

collecting a larger fraction of the AUM as well as a larger fraction of the performance reward. We

note that the impact of the management fee rate is in sharp contrast with the benchmark case where

there is no HWM. In the presence of a HWM, a higher management fee rate reduces all the more the

AUM, making it harder to beat the target.

2.2.4 Baseline Parameter Set

We calibrate the baseline model using the following values for the parameters: θ + δ = 0.16, µ− cI =

0.07, r − cI = 0.03, σ = 0.25, cF = 2% , k = 20% and i = 0%. One can check that under this set of

parameters, condition A3 is indeed satisfied.

Unless specified otherwise, all the simulations are performed for this set of parameters and we shall

investigate the quantitative impact of parameters cF and k.

We now examine the fund manager compensation decomposition between, on the one hand earned

fees for managing the fund and, on the other hand earned fees based on performance.
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2.3 Fund Manager Compensation Decomposition

Let

Fc(W,M) = E0

[∫ ∞
0

cF e
−(θ+δ)tWtdt

]
Fk(W,M) = E0

[∫ ∞
0

ke−(θ+δ)tdMt

]
,

be the lifetime cumulative management and performance fees earned by the fund manager, respectively.

By homogeneity, we can write Fc(W,M) = Mfc(u) and Fk(W,M) = Mfk(u), with fc(0) = fk(0) = 0

and note that Fk satisfies the same boundary condition than F at W = M. It follows that

(1 + k)f ′c(1) = (1 + i)fc(1)

(1 + k)f ′k(1) = k + (1 + i)fk(1).

Recall that u = −J ′(x) and define functions gk and gc such that

gk(x) , fk(−J ′(x))

gc(x) , = fc(−J ′(x)),

For x > x∗, gk satisfies the following HJB

(θ + δ)gk(x) = [(θ + δ − r + cF )x− cF )]g′k(x) +
1

2

(µ− r)2

σ2
x2g′′k(x),

and note that lim
∞

gk = 0. Similarly, we have

(θ + δ)gc(x) = −cFJ ′(x) + [(θ + δ − r + cF )x− cF )]g′c(x) +
1

2

(µ− r)2

σ2
x2g′′c (x).

Proposition 3 The lifetime cumulative performance fee Fk earned by the fund manager is increasing

and strictly concave in W and is given by

Fk(W,M) = AkM
[
f(u)− uf ′(u)

]
,

where

Ak =
k

−(k + 1)
H′2(x∗)
H′′2 (x∗) + (1 + i)H2(x∗)

H′2(x∗)

> 0.

Proof. See the Appendix.

Interestingly, the cumulative lifetime performance fee is proportional to the marginal value of the

total earned fee with respect to the HWM. Next, we look at the share of the performance fee in the

total compensation, i.e. the ratio
fk(u)

f(u)
= Ak(1−

uf ′(u)

f(u)
).

11



In Appendix D1, we establish that lim
u→0

fk(u)
f(u) = Ak

1−β2
and fk

f is increasing in u, which is fairly intuitive

as the closer to the HWM, the larger the option value associated with surpassing the HWM. Numerical

simulations are performed for the baseline parameter case with an exception for parameter cF = 3%.

Figure 1 : Share of the performance fee as a function of W
M

Figure 1 depicts the share of the total compensation due to the performance fee. Figure 1 reveals

that the fund manager derives most of her revenues from the performance fee part and, the closer to

the HWM, the larger the fraction of the fund manager’s compensation due to the performance fee.

For instance, at u = 0.8, the management fee only accounts for 15% of the total compensation. These

results are in sharp contrast with the results obtained in Lan, Wang and Yang (2013) where the fund

manager being concerned with downside liquidation risk chooses a (much) more prudent leverage level

than in our setting.

To understand the magnitude of the incentive fee, one needs to investigate the mechanism between

risk taking and exceeding the HWM, in particular the impact of portfolio holdings in the neighborhood

of the HWM. As derived in Grossman and Zhou (1993)

Et [Mt+h −Mt |Wt = Mt] =

√
2

π
σ |π∗t |Mt

√
h+O(h). (8)

The expected increase in the HWM over the time interval [t, t+ h] is proportional to the fraction π∗

of the AUM invested in equity and
√
h. As

√
h dominates h, clearly an increase in the HWM has a

significant (instantaneous) impact on the manager’s compensation. In section 5, we report that on

average, the HWM is surpassed by a margin of 12.7%.
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2.4 Optimal Investment Strategy

Proposition 4 The fraction of AUM invested in the risky asset π∗ is decreasing in the ratio W
M with

π∗ ≤ µ−r
σ2 (1− β2) and uniformly decreasing (resp. increasing) in k (resp. i).

Proof. See the Appendix.

The interpretation of proposition 4 is quite intuitive. Recall that in the baseline model, there is no

penalty for depleting the fund: the deeper out of the money her incentive contract, the higher the risk

exposure in order to hasten wealth accumulation. Although the fund manager is assumed to be risk

neutral, the ratio RR(u) = −uf ′′(u)
f ′(u) can be interpreted as a measure of her lifetime relative risk aversion;

RR is increasing in u, i.e. the fund manager’s lifetime utility of the manager exhibits increasing

relative risk aversion (IRRA). Drechsler (2014) shows that a similar result may arise, eventhough no

management fee is charged, when the outside payoff of the fund manager is sufficiently large with

respect to the continuition value at the liquidation threshold. In our setting, this is no liquidation

threat and excess risk behavior is induced by the presence of the management fee: as further developed

in the sequel, numerical simulations show that the larger the management fee rate cF , the more the

optimal investment strategy is tilted towards the risky asset. There is an extensive literature that

argues that the convex payoff structure in hedge fund fees creates incentives for the manager to take

excess risk and, in particular when the contract reward is deep out of the money. This result is in line

with Carpenter (2000) and Ross (2004). Interestingly, the maximum value of the fraction of the AUM

invested in the risky asset is bounded and equal to µ−r
σ2 (1 − β2). This is the same expression as the

optimal constant investment strategy derived in Panageas and Westerfield (2009) when no management

fee is charged, even though the level is higher10. This indicates that the optimal investment strategy

derived in Panageas and Westerfield (2009) does exhibit excess risk behavior; in fact, it corresponds

to the case where the HWM is always seen as “infinitely” far away. Nevertheless, the optimal constant

fraction of wealth invested in the risky asset is (uniformly) lower as additional excess risk behavior

due the management fee does not take place. Finally, note that the minimum value of the fraction

of wealth is reached when the HWM is hit and is equal to −µ−r
σ2

x∗H′′2 (x∗)
H′2(x∗) . Unless as in Panageas and

Westerfield (2009), this ratio depends on the performance fee rate k.

The optimal investment strategy reflects the intertemporal trade-off faced by the manager between

(i) her short term objective, namely earning a (high) management fee and beating the high-water mark,

and (ii) her long term objective, i.e. the continuation value. To illustrate this intertemporal trade-off,

assume that the HWM is surpassed by a margin of q percent. The fund manager only pockets fee

kqM, but the AUM level is now M(1 + (1 + i − k)q) and the new HWM is M(1 + (1 + i)q). This

implies that the AUM will have to grow by kq
1+(1+i−k)q percent to hit again the HWM; this ratio is

indeed increasing in q.

We now examine the impact of the fee structure on the optimal investment strategy.

10It is easy to show that β2 is decreasing in cF .
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2.4.1 Impact of the Performance Fee Rate

Proposition 5 For (c, i) given, if k1 < k2, then for all u ∈ [0, 1] , we have π∗1(u) ≥ π∗2(u). For (c, k)

given, if i1 < i2, then for all u ∈ [0, 1] , we have π∗1(u) ≤ π∗2(u).

Proof. See the Appendix.

The manager has all the more incentives to inflate the fund volatility near the HWM as the

performance fee rate k is small. When k is high, the manager incentives to beat the HWM by

a large amount are reduced. This reflects the aforementioned intertemporal trade-off faced by the

fund manager. As mentioned in Panageas and Westerfield (2009), a contract with a HWM can be

seen a sequence of options with changing strike each time the HWM is reset. The optimal strategy

consists in often beating the HWM by small amounts rather than to beating the HWM by large

amounts infrenquently. Finally, the larger parameter i, the larger the inflow of new money that is,

by assumption, proportional to the performance of the fund manager at exceeding the HWM, which

provides extra incentives to take risk.

Figure 2 : Fraction of the AUM invested in stocks as a function of W
M

Worth mentioning is the fact that the effect of distance to the HWM on the increase in risk is all

the more severe as the incentive fee rate gets larger.
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2.4.2 Impact of the Management Fee Rate

Figure 3 : Fraction of the AUM invested in stocks as a function of W
M

Numerical simulations suggest that, the higher the management fee rate, the larger the fund

manager’s appetite for risk. The management fee acts as an insurance: ceteris paribus, a fund manager

earning a hefty management fee is more keen on increasing risk exposure as her revenues are smoothed

out across time. The size of the management fee and the present value of the incentive fee shrinks all

the more as the fund drifts away from the HWM, which triggers a rise in risk taking behavior by the

manager.

2.4.3 How Often is the HWM Hit?

Define the stopping time until next hit

τ = inf
t≥0
{uτ ≥ 1, u0 < 1, given},

where u0 = −H′2(x0)
H′2(x∗) . Then, let us introduce the auxiliary function A with

A(x) =

∫ 1

0
e−

Λt
x (1− t)β1+β2

[
1 +

(
Λ(1− t)

x
+ β1 + β2 + 1

)
ln t

]
dt.

Finally, we assume that β1 + β2 > 0 so that E[τ ] <∞.
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Proposition 6 For an initial condition u0 < 1, the expected time until the HWM is hit is given by

E[τ ] =
1

(β1 + β2)1
2

(µ−r)2

σ2

(
ln
x0

x∗
+A(x∗)−A(x0)

)
,

where u0 = −H′2(x0)
H′2(x∗) .

Proof. See the Appendix.

First of all, we note that E[τ ] is not always finite, so there may be a positive probability that the HWM

is never hit. Condition β1 + β2 > 0 and condition A.1 are not always jointly met under the baseline

parameter set asit is not easy to have the two conditions satisfied for a reasonable set of parameters.

We perform simulations with θ + δ = 0.01, µ = 0.04, r = 0.03, σ = 0.4, cF = 2% , k = 40%.

Figure 4 : Expected Time until Hitting the HWM as a function of W
M

Figure 4 depicts the expected time until the HWM is hit as a function the distance to the HWM

for several values of the management fee rate. We note that the expected time is increasing and convex

as a function of the distance to the HWM making the HWM increasingly difficult to surpass as one

moves away from it. This result is line with the previously developed intuition. Then, to infer the

impact of the management fee on the expected time, we have to investigate two effects (i) the impact

of cF on target level x∗, (ii) the impact of cF on the law of motion of process x. First of all, recall

that we found that ∂x∗

∂cF
< 0. Then, recall that process x remains above x∗ > 1 and only its drift

µx = (θ+δ−r+cF )x−cF depends on parameter cF . An increase in cF raises the drift of x, thwarting

any decrease in process x. Therefore, we should expect that the higher the management fee rate, the

more infrequently the HWM is hit. Indeed, numerical simulations seem to confirm this intuition.
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2.5 Market Value of Earned Fees

So far, we have examined the present value of the fees collected by the fund’s manager. We now derive

the “fair value” or the market value of a claim whose payoffs are equal to the fees earned, assuming

such a claim is marketable. This allows us to compare our results with the paper by Goetzmann,

Ingersoll and Ross (2003) but unlike the latter paper, the investment strategy is optimal, in the sense

that it maximizes the objective function of the fund manager. One of the main implication is that the

volatility of the AUM is no longer constant as in Goetzmann, Ingersoll and Ross (2003) but instead

depends on the distance to the HWM.

We assume that there exists a unique state price density11 ξ whose dynamics are given by

dξt = ξt(−rdt−
µ− r
σ

dwt).

In addition, in order to simply the analysis, we set δ = 0. The market value of the cumulative fees

earned by the fund manager is given by

V (W0,M0, ξ0) =
1

ξ0
E0

[∫ ∞
0

cF ξtWtdt+ kξtdMt

]
.

By homogeneity, we have

V (W0,M0, ξ0) = M0v(u0).

Under the risk neutral probability measure, for all u < 1, the return of the AUM must be equal to

r− cF . It follows that the market price v must satisfy the following Black-Scholes type PDE for u < 1

rv(u) = cFu+ (r − cF )uv′(u) +
σ2
u(u)

2
u2v′′(u),

where σu(u) = −µ−r
σ

f ′(u)
uf ′′(u) is the volatility of the AUM. From Proposition 2, we can write v(u0) =

v(−J ′(x0)) , g(x0). Then, let us write the decomposition of the (market) values of the cumulative

management fee and performance fee as

ξ0M0gc(x0) = E0

[∫ ∞
0

cF ξtWtdt

]
ξ0M0gk(x0) = E0

[∫ ∞
0

kξtdMt

]
.

As W is marketable, we have

E0

[∫ ∞
0

cF ξtWtdt+ kξtdMt

]
= ξ0W0 + E0

[∫ ∞
0

iξtdMt

]
,

i.e., the total compensation of the fund manager is equal to the current value of the AUM augmented

11To be more precise, the unique state price density is ξ′ that follows the same dynamics as ξ for (market) parameters
r̂ and µ̂.
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by the cumulated value of the new money flows. This implies that for all x > x∗∗

−J ′(x) = gc(x) + (1− i

k
)gk(x),

and gk satisfies the following HJB

rgk(x) = [(θ − r + cF +
(µ− r)2

σ2
)x− cF )]g′k(x) +

1

2

(µ− r)2

σ2
x2g′′k(x). (9)

Similarly, we have

rgc(x) = −cFJ ′(x) + [(θ − r + cF +
(µ− r)2

σ2
)x− cF )]g′c(x) +

1

2

(µ− r)2

σ2
x2g′′c (x).

Let α1 and α2 be respectively the positive and negative roots of the quadratic Q̂with

Q̂(y) =
1

2

(µ− r)2

σ2
y2 + (θ − r + cF +

1

2

(µ− r)2

σ2
)y − r.

In the sequel, we shall assume that α1 > 1, or equivalently (µ−r)2

σ2 + θ + c < 2r, so that, an integral

representation is available. Two independent solutions to ODE (9) are

V1(x) = xα2

∫ ∞
0

e−
∆(1+t)

x tα1(1 + t)−α2−1dt

V2(x) = xα2

∫ 1

0
e−

∆t
x t−α2−1(1− t)α1dt,

where ∆ = − cFα1α2
r > 0. The general solution to (9) that vanishes as x goes to ∞ is given by

gk(x) = BkV2(x),

where Bk is a constant to be determined. At x = x∗, function gk satisfies

−(1 + k)
g′k(x

∗)

J ′′(x∗)
= k + (1 + i)gk(x

∗),

and recall that J ′′(x∗) = −H′′2 (x∗)
H′2(x∗) . This leads to

Bk =
k

(1 + k)
V ′2(x∗)H′2(x∗)

H′′2 (x∗) − (1 + i)V2(x∗)
.

The market value of the cumulative management fee is given by

gc(x) =

[
H ′2(x)

H ′2(x∗)
− (1− i

k
)BkV2(x)

]
.
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For the baseline set of parameters, numerical simulations (not reported here) reveal that, as in the case

of the discounted value of cumulative fee, the fund manager earns most of her remuneration through

the performance fee.

3 The Verification Theorem

We present a verification theorem (see for instance Dybvig (1996)) to show that the heuristic proposed

optimal strategy π∗ is indeed valid. We closely follow Panageas and Westerfield (2009). The proof

consists of two steps.

For any feasible strategy π, let define the process

Qπt =

∫ t

0
e−(θ+δ)s(cFW

π
s ds+ kdMπ

s ) + e−(θ+δ)tF (W π
t ,M

π
t ),

where F is the proposed (optimal) value function. Let M > 0 and denote τ = inf
t≥0
{Mt ≥M}.

Step 1: We look for a function F such that

(θ + δ)F = cFW + (r − cF )WF 1 −
1

2

(µ− r)2

σ2

F
2
1

F 11

,

that satisfies the boundary conditions

kF 1(M,M) = k + (1 + i)F 2(M,M)

F (W,M) = 0 for all 0 < W ≤M

F (0,M) = 0 for all 0 < M ≤M.

Let us consider the following Legendre transform

W = −J1(x,M)

x = F 1(W,M).

The solution we are looking for is of the form J(x,M) = K(M)H2(x), for some smooth function K.

It follows that

F (W,M) = K(M)
[
H2(x)− xH ′2(x)

]
,

As H ′′2 > 0, by the Implicit Function Theorem, define function X such that

M = −J1(X(M),M) = −K(M)H ′2(X(M)).
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The boundary condition at W = M leads to

(k − i)X(M)− k = (1 + i)K ′(M)H2(X(M))

M = −K(M)H ′2(X(M)),

with K(M) = 0 so that we must have X(M) = 0. Eliminating function K, we find that X satisfies

the following ODE

1 + i+ k

[
k − i
k

X(M)− 1

]
H ′2(X(M))

H2(X(M))
= (1 + i)MX ′(M)

H ′′2 (X(M))

H ′2(X(M))
.

Set M = em and define x(m) = X(em). Function x is solution of the autonomous ODE

(1 + i)x′(m)
H ′′2 (x(m))

H ′2(x(m))
= ϕ2(x(m)). (10)

with x(m) = 0, where ϕ2(x) = 1 + i + k
[
k−i
k x− 1

] H′2(x)
H2(x) and m = ln M. Recall that function ϕ2 is

decreasing on [k−ik ,∞) and ϕ2 is positive on (0, x∗) and negative on (x∗,∞). If at some point m0 < m

we have ϕ2(x(m0)) < 0, then as
H′′2
H′2

< 0, function x will be increasing on [m0,m] and we shall have

x(m) > x∗, which leads to a contradiction. Hence, for all m ∈ [0,m], x′(m) < 0 and x(m) < x∗.

Furthermore, integrating ODE (10) and using the fact x(m) = 0 leads to∫ x(m)

0
−H

′′
2 (y)

H ′2(y)

dy

ϕ2(y)
=
m−m
1 + i

, (11)

for all m < m. Relationship (11) fully characterizes function x. It remains to show that as m goes to

infinity, function x converges to a constant, more specifically x∗. Given m, function x takes values in

the bounded interval [0, x∗]. For all m > 0, as the right hand side of relationship (11) goes to infinity

and x(m) is bounded, the integral on the left hand side must not converge to a finite value. This

implies that, for all m, we must have lim
m→∞

x(m) = x∗ as ϕ2(x∗) = 0, otherwise the integral on the left

hand side of relationship (11) will take a finite value. Once x is known, we can recover function K

and verify that lim
M→∞

K(M) = − M
H′2(x∗) . We conclude that as M goes to infinity, function F converges

to function F , our candidate function for the solution of program (P). Finally, observe that F 1 > 0,

F 11 = − 1
J11

< 0. Then, by proceeding in the same way as for function F (see Appendix) one can show

that for all W ≤ M F1(W,M) ≤ K0(K(M))
1

1−β2W
1

β2−1 , with K0 = (−β2B(−β2, 1 + β1))
1

1−β2 and

π∗ ≤ µ−r
σ2 (1− β2). This implies that Wπ∗ and Wπ∗F1 are bounded on

[
0,M

]2
.

Step 2: Let T > 0 and denote τ̂ = τ ∧ T. For t ≤ τ̂ , applying Itô’s lemma for semi-martingales (see
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for instance, Grossman and Zhou (1993)), we have

Qπt = Qπ0 +

∫ t

0
e−(θ+δ)sAF (W π

s ,M
π
s )ds+

∫ t

0
σπsW

π
s F1(W π

s ,M
π
s )dws

+

∫ t

0
[k − (k − i)F1(W π

s ,M
π
s ) + (1 + i)F2(W π

s ,M
π
s )] dMπ

s ,

where

AF (W π,Mπ) = cFW
π +

σ2

2
π2W 2F11 + πW π(µ− r)F1 − (θ + δ)F ≤ 0,

for all strategy π and equal to 0 for π∗ = −µ−r
σ2

F1
WF11

. It follows that

∫ τ̂

0
σπsW

π
s F1(W π

s ,M
π
s )dws ≥ Qπτ̂ −Q

π
0 ≥ −Qπ0 as Qπτ̂ ≥ 0. (12)

The left hand side of the inequality is a local martingale that is bounded from below and hence a

supermartigale. Thus

0 ≥ E0

[∫ τ̂

0
σπsW

π
s F1(W π

s ,M
π
s )dws

]
≥ E0[Qπτ̂ ]−Qπ0 ,

i.e.

Qπ0 ≥ E0[Qπτ̂ ].

For strategy π∗, since Wπ∗ and Wπ∗F π
∗

1 are bounded, the previous inequality is an equality as the

left hand side in relationship (12) is actually a martingale. Then, by Lebesgue Monotone Convergence

Theorem, we have

lim
T→∞

E0[Qπ
∗

τ̂ ] = Qπ
∗

0 ≥ Qπ0 ≥ lim
T→∞

E0[Qπτ̂ ].

The left hand side of the inequality converges to E0

[∫ τ
0 (cFW

π∗
s ds+ kdMπ∗

s )e−(θ+δ)s
]

= F (W0,M0),

whereas the right hand side of the inequality converges to E0

[∫ τ
0 (cFW

π
s ds+ kdMπ

s )e−(θ+δ)s
]

as for

any admissible investment strategy must be such that the corresponding value function satisfies the

transversality condition (2). Finally, letting M goes to infinity and using once again Lebesgue Mono-

tone Convergence Theorem combined with the fact that F converges to F , we obtain that

F (W,M) ≥ E0

[∫ ∞
0

(cFW
π
s ds+ kdMπ

s )e−(θ+δ)s

]
,

for every feasible investment strategy π. This concludes the proof.

4 Extension to the Baseline Model

We extend our analysis by incorporating an endogenous termination threat of the fund. We assume

that the fund’s manager cannot experience a large wealth drawdown otherwise clients will withdraw
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all their wealth. Grossman and Zhou (1993) argue that when “leverage is used extensively, [...] an

essential aspect of the evaluation of investment managers and their strategies is the extent to which

large drawdowns occur. It is not unusual for the managers to be fired subsequent to achieving a large

drawdown (typically above 25 percent).” In this section, we assume that the AUM must satisfy

Wt ≥ αMt for all t ≥ 0, (13)

with α ∈ [0, 1), otherwise the fund is liquidated and the manager receives no severance. Goetzman,

Ingersoll and Ross (2003) and Lan, Wang and Yang (2013) use a similar termination condition. We

would like to emphasize that condition (13) differs from the one imposed in the two aforementioned

papers as at Wt = αMt, liquidation does not take place. In fact, it is never optimal for the fund

manager to trigger liquidation, which has interesting implications on the optimal investment strategy.

Define stopping time

τL = inf
t≥0
{Wt < αMt},

so that the fund manager’ optimization problem now is

F (W0,M0) = max
π

E0

[∫ τL∧∞

0
e−(θ+δ)t(cFWtdt+ kdMt)

]
, (P’)

subject to (1).

We expect several implications on the optimal investment strategy. First, as the AUM level is

approaching its termination floor, the fund manager’s risk aversion should rise, which will curb her

position in risky asset in sharp contrast with the baseline model. Second, the manager has now

additional reason to mitigate the growth of the HWM due to the ratchet feature of the termination

floor.

In order to get some insight, we examine the special case where cF = 0.

4.1 No Management Fee cF = 0

4.1.1 Value Function

For all u ∈ [0.1), the reduced HJB is:

(θ + δ)fα(u) = ruf ′α(u)− 1

2

(µ− r)2

σ2

(f ′α(u))2

f ′′α(u)
. (14)

The general solution of the dual HJB is

Jα(x) = K1x
β1 +K2x

β2 ,

so that

fα(u) = (1− β1)K1x
β1 + (1− β2)K2x

β2 ,
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and

u = −β1K1x
β1−1 − β2K2x

β2−1.

Let denote x∗α = f ′α(1) and x∗∗α = f ′α(α). At u = α, in order not to violate the drawdown constraint

with some positive probability in the future, all the AUM must be invested in the riskless asset. This

implies that we must have J ′′α(x∗∗α ) or equivalently αx∗∗α (1 − β1 − β2) = β1β2Jα(x∗∗α ). Note that this

condition is different that the one imposed by Lan, Wang and Yang (2013) - namely fα(α) = 0 - as

in our setting, fα(α) = Jα(x∗∗α ) + αx∗∗α 6= 0. Using the boundary condition at u = 1, we obtain the

following system (S0)

α = −β1K1(x∗∗α )β1−1 − β2K2(x∗∗α )β2−1

0 = β1(β1 − 1)K1(x∗∗α )β1−1 + β2(β2 − 1)K2(x∗∗α )β2−1

1 = −β1K1(x∗α)β1−1 − β2K2(x∗α)β2−1

k − i
1 + i

x∗α =
k

1 + i
+K1(x∗α)β1 +K2(x∗α)β2 .

In the Appendix, we show that $ = x∗α
x∗∗α

in (0, 1) is implicitly (and uniquely) defined by

α[(1− β2)$β1−1 + (β1 − 1)$β2−1] = β1 − β2.

Set $∗ =
[
β1((k−i)β2+1+i)
α(1+i)(1−β2) ∨ 0

] 1
β1−1 ≥ 0. As imposing a drawdown constraint limits the growth of the

AUM, assumption A.1. can be weakened as follows:

A1’. Growth condition: $ > $∗.

Full details on the existence and uniqueness of a solution of system (S0) are reported in the

Appendix. Note that condition A3. is required in this setting to ensure that the wealth process

bounces back when W hits the floor αM .

4.1.2 Optimal Investment Strategy

We have the following proposition.

Proposition 7 The optimal fraction of the AUM π∗α invested in the risky asset is increasing in u and

for all u ∈ [0, 1] and ∂π∗α
∂α < 0.

Proof. See the Appendix.

Clearly, imposing a threat of termination triggered by a large drawdown of the AUM has a major

impact on the optimal investment policy. First, the fear of termination overcomes the fund manager’s

appetite for risk shifting. The lifetime manager’s relative risk aversion becomes decreasing in wealth

and consequently the optimal fraction of the AUM invested in risky asset π∗α is now increasing in u

instead of being constant as in Panageas and Westerfield (2009). Second, as shown in Figure 5, the
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level of risk exposure is also sharply affected: the lifetime manager’s relative risk aversion is (globally)

magnified by the fear of liquidation and consequently the fraction of AUM invested in the risky asset

is all the more (uniformly) reduced as the termination threat becomes more stringent (larger value for

α).

4.2 General Case

4.2.1 Value Function

We need to look for a general solution for the reduced dual HJB (6). Details are reported in the

Appendix. The general solution is

Jα(x) = K1H1(x) +K2H2(x),

where K1 and K2 are constants to be determined. It follows that

u = −J ′α(x) = −K1H
′
1(x)−K2H

′
2(x).

The boundary conditions at u = α and u = 1 (resp. at x∗∗α and x∗α) lead to the following system (S)

α = −K1H
′
1(x∗∗α )−K2H

′
2(x∗∗α )

0 = K1H
′′
1 (x∗∗α ) +K2H

′′
2 (x∗∗α )

1 = −K1H
′
1(x∗α)−K2H

′
2(x∗α)

k − i
1 + i

x∗α =
k

1 + i
+K1H1(x∗α) +K2H2(x∗α).

Proposition 8 For all α ∈ (0, 1), system (S) admits a unique solution with x∗α < x∗∗α and the reduced

dual value function Jα defined on the interval [x∗α, x
∗∗
α ] is decreasing and strictly convex and is given

by

Jα(x) = K1H1(x) +K2H2(x),

with K1 < 0 and K2 > 0.

Proof. See the Appendix.

The optimal (reduced) wealth process is now given by

u = −K1H
′
1(x)−K2H

′
2(x),

where process x is defined in (7). The first term is positive and encapsulates hedging motives to ensure

that AUM does fall below the liquidation floor. Typically, this term has a put option flavor and can be

related to portfolio insurance strategies involving simple options such as in Black and Perold (1992)

and Tepla (2001). As in the baseline model, the second term regulates the growth rate of the AUM
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to mitigate the ratchet effect of the HWM. In the limiting case α = 1, we have

x∗α = x∗∗α =
Λ(1 + i)− kβ1β2

(1 + i)(1− β1 − β2)− (k − i)β1β2
> 0,

i.e., Wt ≡Mt and

F (W,M) =
Λ(1 + i)− kβ1β2

(1 + i)(1− β1 − β2)− (k − i)β1β2
M.

It is easy to verify that in this case F is independent of µ and r.

4.2.2 Optimal Investment Strategy

The optimal investment strategy π∗α is given by

π∗α = −µ− r
σ2

xJ ′′α(x)

J ′α(x)
, x∗α ≤ x ≤ x∗∗α .

As in the no management fee case, π∗α may be increasing in u but alternatively it can be hump-shaped

in u; a sufficient condition for the latter to occur is ∂π∗α
∂x

∣∣∣
x=x∗α

> 0, i.e.

J ′′α(x∗α) + x∗αJ
′′′
α (x∗α) + x∗α(J ′′α(x∗α))2 < 0.

Even though we do not report further results, numerical simulations for the baseline case parameters

reveal that this condition is always satisfied for sufficiently (very) small values of the drawdown

coefficient α. The intuition for such a result is straightforward: The appetite for risk of the hedge

fund manager is greatly reduced when the AUM approaches the termination floor but as soon as the

AUM is moving away from the floor, the optimal investment strategy exhibits excessive risk taking

behavior although at a decreasing rate.
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Figure 5 : Fraction of the AUM invested in stocks as a function of W
M (cF = 0)

Figure 6 : Fraction of the AUM invested in stocks as a function of W
M (cF > 0)

Comparing figure 5 and figure 6, we note that for sufficiently small values of α, the risk exposure

is (globally) larger when a management fee is charged whereas for sufficiently large values of α, the

reverse is true.
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4.2.3 Fund Manager Compensation Decomposition

As in the baseline case, let fc and fk denote the lifetime cumulative management and performance fees

respectively and, gc and gk the associated functions. The only difference with respect to the baseline

case is the boundary condition at u = α or equivalently at x = x∗∗α . Note that g′c(x) = −J ′′α(x)f ′c(u),

so it must be the case that g′c(x
∗∗
α ) = 0 as J ′′α(x∗∗α ) = 0. Similarly, we must have g′k(x

∗∗
α ) = 0. In

particular, this last boundary condition implies that fk(α) = 0 (but fc(α) > 0). In the Appendix, we

show that for all x ∈ [x∗α, x
∗∗
α ], we have

gk(x) = Ak1H1(x) +Ak2H2(x),

with

Ak1 = − kJ ′′α(x∗α)H ′2(x∗∗α )

(1 + k) [H ′1(x∗α)H ′2(x∗∗α )−H ′2(x∗α)H ′1(x∗∗α )] + (1 + i)J ′′α(x∗α) [H1(x∗α)H ′2(x∗∗α )−H2(x∗α)H ′1(x∗∗α )]

= − kJ ′′α(x∗α)

(1 + k)H ′2(x∗α)
[
H′1(x∗α)
H′2(x∗α)

− H′1(x∗∗α )
H′2(x∗∗α )

]
+ (1 + i)J ′′α(x∗α)H2(x∗α)

[
H1(x∗α)
H2(x∗α) −

H′1(x∗∗α )
H′2(x∗∗α )

]
Ak2 = − kJ ′′α(x∗α)

(1 + k)H ′1(x∗α)
[
H′2(x∗α)
H′1(x∗α)

− H′2(x∗∗α )
H′1(x∗∗α )

]
+ (1 + i)J ′′α(x∗α)H1(x∗α)

[
H2(x∗α)
H1(x∗α) −

H′2(x∗∗α )
H′1(x∗∗α )

] .
For the baseline set of parameters, numerical simulations (not reported here) reveal that the discounted

value of cumulative incentive fee is quite low and accounts only for a small fraction of the manager

total fee compensation.

5 Empirical Evidence

The data were obtained from the Hedge Fund Research database and comprises monthly observations

of returns of both active and liquidated hedge funds over the 1976-2013 period. It also includes several

fund characteristics, importantly regarding the compensation structure. We drop the observations with

non-positive assets and age, and missing data for the basic variables. The sample to funds excludes

those that do not have a hurdle rate because of the complexity of computing such hurdle for over

six hundred different rates. We look only at funds that do have incentive fees with high-water mark

provisions. The final sample consists of 34,919 observations corresponding to 6,267 different funds.

All the variables are winsorized at the 1% level.

As stressed by Joenväärä et.al (2016), the relevance of different biases vary across datasets −
BarclayHedge, TASS, HFR, EurekaHedge, and Morningstar, in particular − and may alter some

conclusions on the performance of funds. We feel, however, that the problem is of less importance

when one explores volatility since this is not as salient as returns. For instance, if agents observe or

care more about returns than the risks associated to them, funds will not self-select or misreport as

much on this variable. Similarly, backfilling and survivorship biases will matter less if they are more

related to returns than to volatility.
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Risk-taking is not observable and thus has to be estimated. We measure the degree of risk that

each fund takes with the volatility of realized monthly returns for the 12 months that follow the

anniversary of the inception of the fund. Moreover, since the distance to the HWM is not reported,

we follow Aragon and Nanda (2012), and compute it assuming the fund at inception is at the water

mark and calculate the HWM in each period as the maximum between the one the year before and

the actual value of the fund. The actual value of the fund is the cumulative after-fees return. In order

to facilitate the reporting of our results, contrary to the theoretical model, our distance variable is the

value of the fund over the HWM minus one, that is, it corresponds to 0 when the fund is at the HWM

and decreases as the fund moves farther away from it.

The main simplification here is that we compute only one high-water mark for each fund and

period, even though there are many such marks depending on when each investor invested in the

fund. This can be an issue for funds with many investment rounds for which the errors-in-variables

problem would be a greater issue. However, as these funds are probably older, our age control would

ease this concern.

Our benchmark regression model is as follows:

riski,t+1 = α+ β1 × ln(age)i,t + β2 ×USi + β3 × Returni,t + β4 × Ranki,t +

β5 × distance to HWMi,t + year fixed effects + fund fixed effects + εi,t.

Proposition 4 implies that β5 is negative since the farther away the fund drifts from the HWM,

the smaller the management fee and the present value of the incentive fee will be. If the AUM is far

away from the HWM, the infinitely-lived manager will be less worried about surpassing the HWM by

too much, which incentivizes risk-taking behavior.

The specification also includes past absolute returns (Return) and returns relative to other funds

(Rank). Empirically, returns relative to other funds have been shown to be of first order importance

(see, for instance, Brown etal (2001) and Aragon and Nanda (2012)). Theoretical models suggest

their importance, although it is often difficult to separate absolute returns from returns relative to the

high-water mark. We will be looking at the effect of the distance to HWM after controlling for these.

We also include age to account for potential career concerns and reputational effects and whether the

fund is based on the U.S. to accommodate institutional differences in the capacity to take risk and

other conventions (when not including fund fixed effects). We also add year fixed effects to capture

changing conditions that affect all funds, such as market swings, that may affect performance, and

therefore their distance to the watermark and potentially the attitude of portfolio managers towards

taking risk.

In our main specification, we use fund fixed effects to capture time-invariant fund characteristics;

these include features such as strategy, localization, etc. Controlling for strategy is also important

to ease the potential bias arising, for instance, from stale prices due to illiquidity. The identification

relies on the within fund variation as we are comparing funds with themselves at different moments

in time. In the end, we are asking whether a particular fund behaved differently when at different
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distances from the high watermark. More specifically, if the fund took more risk in the years in which

it was farther away from its HWM.

Previous empirical work has adopted a framework that is a bit different from ours in that is has

sought to explain changes in risk-taking from the first to the second semester with the distance to

the HWM at mid year (see, for instance, Brown et.al (2001), Agarwal et.al (2002), and Aragon and

Nanda (2012)). We believe our framework is more in the spirit of our model where the manager is

infinitely lived and is not concerned just with the short-term: she will have an incentive to take on

more risk whenever she is under the HWM and not just (or especially) during the second semester of

each year. Also, we are not forced to assume that HWM are always resent on January.

Also, when looking at the impact of fees, many papers look at differences in risk-taking across funds

with and without incentive fees. Here we focus on funds with incentive fees and HWM provisions and

explore whether the level of fees make a difference on risk-taking.

The downside of our specification is that we will not be able to identify the effect of time-invariant

(or nearly) fund characteristics; importantly the impact of the structure of fees. We will, however,

present results with no fund fixed effects to provide suggestive evidence of the likely impact of those

factors.

As a robustness check, we show that previous specifications provide results that are qualitative

and (for the most part) quantitatively consistent. We compute robust standard errors to consider

potential heteroskedasticity and cluster them at the management firm level12.

Table 1. Summary Statistics
Obs Mean S.D. Min Max

ST Dev of Return ex post 34,919 0.117 0.097 0.009 0.497
Return t 1 34,919 0.128 0.211 0.428 0.885
Rank t 1 34,919 1,861 1,296 1 4,885
Assets (milion USD) 33,906 190 590 0.01 26,326
Age 34,919 5.2 4.2 1.0 35.0
U.S. based 34,919 0.76 0.43 0.00 1.00
Distance to HWM 34,919 0.027 0.082 0.507 0.000
Under HWM 34,919 0.19 0.39 0.00 1.00
Mgmt Fee % 34,919 1.47 0.59 0.00 10.00
Incentive Fee % 34,919 18.3 4.7 1.0 50.0
Year 34,919 2,005 5 1,978 2,012

Table 1 summarizes the data. There is important variation around the mean ex-post volatility

of returns of 11.7% that we can exploit: the standard deviation is 9.7%, the minimum 0.9% and the

maximum 49.7%. The average fund size is 190 million dollars and 5.2 years old. Seventy-six percent of

them are based in the U.S. As for the fees, these are not far from the traditional 2/20 structure, with

a median of 1.5% for the management fee and 20% for the incentive remuneration. 6,635 observations

12Aragon and Nanda (2012) also cluster by strategy. Results are mainly unaffected, but the incentive fee effect turns
out to be non-significant.
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(19% of the sample) correspond to years in which a fund was under its HWM. Overall, these figures

are similar to the ones reported in the literature using other datasets and time frames. When one

considers all the funds, the average distance to the HWM is 2.7%. Conditional on being underwater,

the mean distance is 14.3%, with a standard deviation of 13.8%.

On average, when a fund surpasses its HWM, it does so by a margin of 12.7% (standard deviation

16.9%) and once it does, it takes on average 1.22 years to reach it again. Having the fee structure

of a fund, one can compute the share of income that comes from the incentive and the management

component during a given period. If we consider the period between two hits, a fund manager will get

on average 48.5% of its income from the incentive component. That is, incentive fees are a significant

fraction of revenues and, therefore, should be expected to play an important role in the strategic

behavior of fund managers, as our model suggests.
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Table 2. Benchmark Regressions

Log age (years) 0.001 0.004*** 0.003 0.004*** 0.004*** 0.003
0.001 0.001 0.002 0.001 0.001 0.002

U.S. based ( 0.005) ( 0.004) ( 0.003) ( 0.003)
0.004 0.003 0.004 0.004

Distance to HWM 0.283*** 0.468*** 0.096*** 0.465*** 0.249*** 0.032
0.012 0.015 0.01 0.015 0.043 0.034

Return t 1 0.173*** 0.045*** 0.172*** 0.172*** 0.045***
0.006 0.005 0.006 0.006 0.005

Rank t 1 x 10 3 0.005*** 0.006*** 0.006*** 0.006*** 0.006***
0.001 0.001 0.001 0.001 0.001

Management fee 0.011*** 0.010***
0.004 0.003

Incentive fee 0.001* 0.001
0.001 0.001

Distance to HWM x Management fee 0.018 0.002
0.02 0.021

0.010*** 0.007***
0.002 0.002

N 34919 34919 34919 34919 34919 34919
R sqr 0.262 0.336 0.724 0.341 0.343 0.724

Strategy fixed effects YES YES YES YES YES YES
Fund fixed effects NO NO YES NO NO YES
Year fixed effects YES YES YES YES YES YES

The dependent variable is the standard deviation of monthly returns during the 12 months that

follow the aniversary of each fund's inception date. Distance to HWM is the value of the fund

divided by the HWMminus one, that is, it corresponds to 0 when the fund is at the HWM and

decreases as the fund moves farther away from it. All variables are winsorized at the 1% level.

Standard errors are robust to heteroskedasticity and clustered at the management firm level.

Significance levels: * p<0.05, ** p<0.01, *** p<0.001

Distance to HWM x Incentive fee

Table 2 presents the main results. To explore the main effects of time-invariant fund characteristics,

importantly the fee structure, we do not include fund fixed effects in some of the regressions in the

table. We then corroborate that the results are not due to time-invariant omitted variable bias by

adding the fund fixed effects.

The first column establishes that risk-taking increases with the distance to the HWM: the coefficient
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of this variable is negative and highly significant. Consistent with our model, funds that are further

away from their HWM tend to take more risk when compared to others that are closer to it. Being

older and based in the U.S. does not seem to have a major impact on risk. The second column shows

that the positive relation between distance and risk is not (entirely) driven by the absolute return

of the fund or its return in relation to the others: the coefficient for distance is still negative and

significant. The negative sign for the Rank variable is consistent with tournament behavior that has

been documented before: funds that do poorly relative to others tend to take on more risk. The

positive effect of Return means that funds that do well take tend to be riskier. This is not inconsistent

with previous findings such as Aragon and Nanda (2012)’s since this effect is after controlling for

performance relative to others and relative to oneself. Consistent with what Brown et.al (2001) finds,

the significance of the negative relation between relative performance and volatility, although it does

not disappear completely, drops to half when one controls for the distance to HWM (not reported).

The results above come from pooled regressions, that is, are identified via comparing the same

fund at different moments but also across different funds. This can be problematic since funds do not

only vary in terms of their distance to HWM and leaving those other characteristics aside may induce

estimation bias. In the third column we add fund fixed effects and show that the relation between

distance to HWM and risk is still consistent with the prediction of the model when we identify the

effect just by comparing the same fund at different moments: the coefficient for the value relative to

HWM is still strongly negative. Importantly, the effects of distance and of returns are independent of

each other. That is, we are not simply capturing the fact that risk increases after good performance.

Rather, we document that the effect is reinforced when the fund is farther away from its high-water

mark. Its magnitude is about one third of the one obtained before, meaning that other, time-invariant

fund characteristics were explaining the bulk of the effect, highlighting the importance of controlling

for these in empirical work. Despite this, the economic magnitude of the effect is important. For

instance, being 20% underwater is associated with 192 bps increase in the standard deviation of the

next 12-month returns or 16.4%.

In the following columns we explore the role of the fee structure on risk-taking. Column four reports

that risk increases with the level of management fee since the coefficient is positive and significant.

This is what we expected from the model and the simulations ever since the management fee acts as an

insurance. Increasing the management fee rate from, say, 1% to 3% is associated with an increase in

20% of the standard deviation of returns. The positive coefficient for the incentive fee rate is, however,

not consistent with the model. We expected a negative coefficient because if the manager takes on

more risk and beats the HWM by a larger amount, it becomes harder to beat it again in the future.

In any case, the coefficient is only marginally significant (p-value 9%) and very small: increasing the

fee from 15% to 20% would increase risk by only 42 bps or 5%. Moreover, as can be seen in the next

column, the result is not robust either.

In column 5 we explore how the relation between the distance to the HWM and risk is shaped by

the structure of fees. Our simulation depicted in Figure 2 suggests that the increase in risk as the

fund gets farther away from the HWM is all the more severe as the incentive fee gets larger as moving
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farther away from the HWM implies a larger forgone present value of the incentive fee.

We therefore expect the coefficient of Distance to be more negative for funds that charge a higher

incentive fee. This is exactly what the negative and significant coefficient for the interaction between

Distance and Incentive Fee means. Its size is relevant: the slope of risk to distance is 20% higher for a

fund with a 20% incentive fee compared to one with a 15% charge. This expands Aragon and Nanda

(2012)’s results as the relationship not only gets stronger for funds with incentive pay but increase

with the level of it. On the contrary, we do not find the effect of distance being stronger with the level

of management fee.

From now on we include fund-fixed effects in all regressions and show that the results are robust

to controlling for all time-invariant fund characteristics. Of course, we are no longer able to identify

the main effect of the fee structure. Column six shows that these effects are robust to controlling for

fund fixed effects. The magnitude of the incentive fee distance interaction is of similar magnitude.
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Table 3. Further Results

Panel A

Equity
Hedge

Event
Driven

Fund of
Funds

Macro Relative
Value

Log age (years) 0.003 0.001 0.001 0.004* 0.001 0.001
(0.002) (0.002) (0.004) (0.002) (0.005) (0.004)

Distance to HWM 0.049** 0.093*** 0.149*** 0.012 0.126*** 0.052*
(0.023) (0.013) (0.035) (0.025) (0.032) (0.029)

Distance to HWM squared 0.117**
(0.053)

Return t 1 0.044*** 0.039*** 0.047*** 0.042*** 0.035*** 0.030**
(0.005) (0.007) (0.015) (0.015) (0.012) (0.012)

Rank t 1 x 10 3 0.006*** 0.004*** 0.008*** 0.003*** 0.004*** 0.009***
(0.001) (0.001) (0.002) (0.001) (0.002) (0.001)

N 34919 14950 3941 4974 6593 4461
R sqr 0.724 0.704 0.7 0.76 0.718 0.674

Strategy fixed effects YES YES YES YES YES YES
Fund fixed effects YES YES YES YES YES YES
Year fixed effects YES YES YES YES YES YES

The dependent variable is the standard deviation of monthly returns during the 12 months that follow
the aniversary of each fund's inception date. Distance to HWM is the value of the fund divided by the
HWMminus one, that is, it corresponds to 0 when the fund is at the HWM and decreases as the fund
moves farther away from it. All variables are winsorized at the 1% level. Standard errors are robust to
heteroskedasticity and clustered at the management firm level.
Significance levels: * p<0.05, ** p<0.01, *** p<0.001

In Table 3 we expand the results. First, we find that the distance effect is not linear but also convex:

as the fund gets farther away from the HWM, the incentive risk-taking increases more rapidly. In

the first column of Panel A, we show that the square of distance enters significantly positive in the

regression. Figure 7 depicts this result. This is what we obtain from our simulations.
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Figure 7 : AUM returns volatility as a function of the distance to HWM

The next columns of Panel A show that, although to different degrees, the main result generally

applies to all kinds of hedge funds. Except for the case of funds of funds, the effect of distance for

the average fund is negative. Furthermore, the increase in risk following poor performance relative to

the HWM is more pronounced for funds with higher incentive fees in most kinds, although not always

significantly so (not reported). One would expect the response of managers to be larger when there is

more flexibility for them to change the level of risk, in particular, to increase it. We do find such an

effect since the impact is stronger for funds can lever up, as reported in the first column in panel B,

since the interaction between an indicator of this capacity and distance is significantly negative.
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Panel B

Log age (years) 0.003 0.003 0.003

(0.002) (0.002) (0.002)
(0.015) (0.013) (0.101)

Return t 1 0.045*** 0.045*** 0.126***
(0.005) (0.005) (0.023)

Rank t 1 x 10 3 0.006*** 0.006*** 0.059***
(0.001) (0.001) (0.015)

Distance to HWM x Leveraged 0.028*
(0.016)

Distance to HWM x Fast Redemption 0.037**
(0.017)

Threat of Liquidation 1.876***
(0.528)

Distance to HWM x Threat of Liquidation 0.600*
(0.312)

N 34760 34919 34919
R sqr 0.724 0.724 0.724

Strategy fixed effects YES YES YES
Fund fixed effects YES YES YES

The dependent variable is the standard deviation of monthly returns during the 12 months that follow
the aniversary of each fund's inception date. Distance to HWM is the value of the fund divided by the
HWMminus one, that is, it corresponds to 0 when the fund is at the HWM and decreases as the fund
moves farther away from it. Column 1 includes only the funds that are allowed to lever up. All
variables are winsorized at the 1% level. Standard errors are robust to heteroskedasticity and
clustered at the management firm level.
Significance levels: * p<0.05, ** p<0.01, *** p<0.001

The threat of a large drawdown following poor performance has a major impact on the optimal

policy. In particular, the fear of liquidation magnifies the relative risk aversion of the manager and

consequently the fraction invested in the risky asset is reduced. To test this implication, we ask

whether the impact of distance on risk is reduced when this is more likely. In column two add the

interaction between distance and an indicator that takes the value of 1 if the funds can be redeemed

within less than a month and 0 otherwise. The coefficient for that variable is significantly positive, as

expected. We did the same exercise for funds needing less than 30-day notice in advance to withdraw
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the money and those with minimum investment of 1 million dollars and also found positive coefficients,

although not significantly so (not reported).

To further test for the impact of the likelihood of liquidation we took a two-step approach. First,

we estimated a probit model to predict whether a fund would be liquidated at any point in time.

The model has an indicator variable that takes a value of 1 if the fund was actually liquidated and

cero otherwise, and two independent variables: absolute return and return relative to the other funds.

In the second stage we add the predicted value for liquidation from the first step to our benchmark

regression, both alone and interacted with the distance variable. We get a negative coefficient for the

threat of liquidation and a positive coefficient for its interaction with distance. This is exactly what

we expected from the model.

Table 4 explores what happens with the frequency and extent to which the high-water mark is

surpassed.
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Table 4. Frequency and Extent of Surpass of HWM

Log age (years) 0.060*** 0.060*** 0.035*** 0.035***
(0.007) (0.007) (0.002) (0.002)

Distance to HWM 2.452*** 3.028*** 0.461*** 0.658***
(0.078) (0.292) (0.018) (0.068)

Return t 1 0.275*** 0.276*** 0.600*** 0.600***
(0.023) (0.023) (0.013) (0.013)

Rank t 1 x 10 3 0.107*** 0.107*** 0.007*** 0.007***
(0.005) (0.005) (0.001) (0.001)

Distance to HWM x Management fee 0.047 0.019
(0.132) (0.016)

Distance to HWM x Incentive fee 0.027* 0.009**
(0.014) (0.004)

N 34045 34045 34819 34819
R sqr 0.551 0.552 0.688 0.688

Strategy fixed effects YES YES YES YES
Fund fixed effects YES YES YES YES
Year fixed effects YES YES YES YES

The dependent variable is the time between two hits in columns 1 and 2, and the percentage
increase in the HWM in columns 3 and 4. Distance to HWM is the value of the fund divided by the
HWMminus one, that is, it corresponds to 0 when the fund is at the HWM and decreases as the
fund moves farther away from it. All variables are winsorized at the 1% level. Standard errors are
robust to heteroskedasticity and clustered at the management firm level. Significance levels: *
p<0.05, ** p<0.01, *** p<0.001

Time between Hits Extent of Surpass

The first column shows that the time elapsed between hits increases with the distance to HWM, as

reflected in the negative coefficient for the distance to HWM variable. That is, maintaining the AUM

is close to its HWM will typically result in hitting the watermark often. This is what was expected

from the model: as the fund falls behind the HWM it becomes increasingly difficult to surpass it in

the future; taking on more risk mitigates this effect. Also consistent, is the fact that this effect is

weaker as the incentive fee increases (column two). We did not find, however, that the frequency of

hits decreases more rapidly in funds with higher management fee rates.
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The next two columns explore the extent to which the watermark is surpassed when it effectively

is. Since the coefficient for distance is negative, the jump is smaller when the fund is closer to its

HWM. This is consistent with the intuition because, in that case, it will be optimal to beat the high-

water mark frequently by a small amount to mitigate the ratchet effect. Those considerations become

less important as the fund gets farther away, and especially when the management fee rate is larger

(insurance) and the performance fee rate is smaller (future cost of surpassing the HWM). We find

evidence consistent with the latter implication.

In Table A1 in the Appendix, we conduct our benchmark analysis using an alternative specification,

in the line of Brown et.al (2001), and Aragon and Nanda (2012). This consists on observing the change

in risk during the second semester of the year with respect to the first semester and relating it to the

fund’s performance. To be consistent with our previous assumptions, in the first thee columns we

consider only the funds with inception in the month of January. This greatly reduces the number of

observations. The results are perfectly consistent with what has been documented in the literature

before: on average risk increases following poor performance measured in relation to others and to the

HWM. In the following three, we expand the sample to include all funds, regardless of their inception

month. That is, we compute the change in the standard deviation of monthly returns for months t+6

through t + 12 versus months t though t + 5 relative to each fund’s inception date. The results are

qualitatively the same compared to our benchmark in Table 2: risk increases with the management

fee and with the distance to HWM, especially when the incentive fee is high.

As a robustness check, in column 7 we just keep the funds that have neither and incentive fee nor

a HWM provision and show that, for them, there is no effect on risk-taking of being far from what

would have been their high-water mark.

6 Conclusion

We have examined how a management fee combined with a performance fee affect the optimal in-

vestment strategy of a hedge fund and the hedge fund manager’s compensation. Our baseline model

is a simple extension of the work by Panageas and Westerfield (2009). One of our main finding is

to highlight that the important role played by management fee as it contributes to smooth out the

manager’s revenues, acting as an insurance policy. Ceteris paribus, this translates into a more aggres-

sive optimal investment strategy with respect to the no management fee case. Second, even though

the fund manager has risk neutral preference over money, the option like compensation scheme makes

her lifetime utility of the manager exhibits increasing relative risk aversion (IRRA). Consequently,

the fraction of the AUM invested in equity is all the more rising the farther away the AUM moves

from the HWM. This is in sharp contrast with the result in Panageas and Westerfield (2009) in which

the optimal investment strategy consists in holding a constant fraction of the AUM in stock that is

independent of the performance fee rate. In this paper, holdings in risky assets are negatively related

to the magnitude of the performance fee rate. This reflects the intertemporal trade-off faced by the

manager: Rising the AUM volatility by tilting portfolio holdings towards equity in order to signifi-
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cantly, although infrequently, surpass the HWM and pocket a hefty performance fee or alternatively

beating more often the HWM by a small amount by choosing a more conservative investment strategy.

The latter turns out to be optimal, reflecting the manager’s preference for a policy of small steps to

achieve smoother revenues. Consistently, we find that the expected time until the next HWM hit is

increasing in the (relative) distance between the current value of the AUM and the HWM. Regarding

the manager compensation, perhaps surprisingly, we find that both an increase in either the manage-

ment fee or the performance fee lowers the manager’s lifetime earnings but recall that proportional

fees reduce the size of the AUM. Regarding the compensation decomposition, we find that the fund

manager derives most of her revenue from the performance fee.

An extension to the baseline model introduces an early termination should the AUM experience a

sufficiently large drawdown, measured as fraction of the HWM. The impact on the optimal investment

strategy is significant. The closer the AUM gets to the minimum floor, the higher the fund manager’s

lifetime risk aversion, which curbs down the risky portfolio allocation. Depending of the parameters of

the model, the optimal fraction of AUM invested in risky asset is either increasing in wealth or hump

shaped. The former pattern always prevails when the management fee is small and the liquidation

floor is high. Conversely, we observe the latter pattern for sufficiently large management fee rate and

low liquidation floor, which indicates that as soon as the termination threat is low enough as the

AUM has moved away from the liquidation floor, the convex like feature of the compensation scheme

induces the optimal investment strategy to exhibit excess risk taking as in the baseline model.

We provide empirical support for the main implications of the model. Data seem to support the

theoretical predictions of the model: returns’ volatility is strongly related to distance to the HWM,

especially for funds with a high incentive fee rate. Also, the time elapsed between hits and the

extent to which the fund surpasses the HWM both increase with distance. Finally, the threat of

fund termination reduces risk and mitigates the positive relationship between risk and distance to the

high-water mark.
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7 Appendix

Appendix A

F (W,M) <∞. For all 0 ≤W0 ≤M0 we have

F (W0,M0) ≤ E0

[∫ ∞
0

e−(θ+δ)t(cFMtdt+ kdMt)

]
≤ cF

θ + δ
M0 +

(θ + δ)cF + k

k
max
π

E0

[∫ ∞
0

e−(θ+δ)tkdMt

]
.

Under condition A1, the expectation on the RHS of the inequality is indeed bounded (see Panageas

Westerfield (2009)).

Derivation of the Dual Reduced Value Function J . Consider the following ODE

x2f ′′(x) + [(1− β1 − β2)x− Λ)]f ′(x) + β1β2f(x) = 0, (15)

with Λ = − cF β1β2

θ+δ > 0. Define auxiliary function g such that f(x) = xβ2g(x). It is easy to verify that

g satisfies the following ODE

x2g′′(x) + [(1− β1 + β2)x− Λ)]g′(x)− β2
Λ

x
g(x) = 0.

Then, define auxiliary function h such that g(x) = h(−Λ
x ) and y = −Λ

x < 0. It is easy to verify that

function h is a solution of the Kummer equation

yh′′(y) + (b− y)h′(y)− ah(y) = 0, (16)

where a = −β2 and b = 1 + β1 − β2. Next we show that if g is a solution on the positive real line of

(16) with parameters (a, b), then h defined by h(y) = eyg(−y) with y < 0 is a solution on the negative

real line of (16) with parameters (b− a, b). Set x = −y, we have g′(x) = ex [h(−x)− h′(−x)] and

g′′(x) = ex [h(−x)− 2h′(−x) + h′′(−x)] . It is easy to check that h satisfies:

yh′′(y) + (b− y)h′(y)− (b− a)h(y) = 0.

One solution of equation (16) is the Kummer function

h(z) = M(a, b, z) =
1

B(a, b− a)

∫ 1

0
eztta−1(1− t)b−a−1dt,

where Γ(a) =
∫∞

0 e−uua−1du and B(a, b) = Γ(a)Γ(b)
Γ(a+b) are the Euler Gamma and Beta functions, respec-
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tively. An independent solution for z < 0 is

h(z) = ezU(b− a, b,−z) =
1

Γ(a)

∫ ∞
0

ez(1+t)tb−a−1(1 + t)a−1dt.

The general solution of (15) is given by:

f(x) = K1H1(x) +K2H2(x),

where

H1(x) = xβ2

∫ ∞
0

e−
Λ(1+t)
x tβ1(1 + t)−β2−1dt

H2(x) = xβ2

∫ 1

0
e−

Λt
x t−β2−1(1− t)β1dt,

with (K1,K2) ∈ R2. One can check that

H ′1(x) = β1x
β2−1

∫ ∞
0

e−
Λ(1+t)
x tβ1−1(1 + t)−β2dt > 0

H ′′1 (x) = β1(β1 − 1)xβ2−2

∫ ∞
0

e−
Λ(1+t)
x tβ1−2(1 + t)−β2+1dt > 0

H ′2(x) = −β1x
β2−1

∫ 1

0
e−

Λt
x t−β2(1− t)β1−1dt < 0

H ′′2 (x) = β1(β1 − 1)xβ2−2

∫ 1

0
e−

Λt
x t1−β2(1− t)β1−2dt > 0.

In the paper, we make use of the following asymptotic behaviors

H1(x) ∼
0

Λ−β1−1Γ(β1 + 1)xβ1+β2+1e−
Λ
x and H ′1(x) ∼

0
Λ−β1Γ(β1 + 1)xβ1+β2−1e−

Λ
x

H1(x) ∼
∞

Λβ2−β1Γ(β1 − β2)xβ1 and H ′1(x) ∼
∞
β1Λβ2−β1Γ(β1 − β2)xβ1−1

H2(x) ∼
0

Λβ2Γ(−β2) and H ′2(x) ∼
0
−β1Λβ2−1Γ(1− β2)

H2(x) ∼
∞
B(−β2, 1 + β1)xβ2 and H ′2(x) ∼

∞
β2B(−β2, 1 + β1)xβ2−1,

so that we obtain that

f(u) ∼
0

β2 − 1

β2
Qu

β2
β2−1 , with Q =

(
β2B(−β2, 1 + β1)

H ′2(x∗)

) 1
1−β2

. (17)
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The Wronskian of ODE (15) is given by

W (H1, H2)(x) = H ′2(x)H1(x)−H ′1(x)H2(x)

= −Λβ2−β1Γ(−β2)Γ(β1 + 1)e−
Λ
x xβ1+β2−1 < 0

W (H ′1, H
′
2)(x) = H ′′2 (x)H ′1(x)−H ′′1 (x)H ′2(x)

= β1β2x
−2W (H1, H2)(x) > 0.

Assume that the boundary condition at u = 0 is reached a finite point x ∈ (0,∞). We have

0 = K1H1(x) +K2H2(x)

0 = K1H
′
1(x) +K2H

′
2(x).

The first condition implies that constants K1 and K2 must have opposite sign; using the second

condition, since H ′1 > 0 and H ′2 < 0, we deduce that constants K1 and K2 must have the same sign,

which leads to a contradiction as both K1 and K2 are not equal to zero. We conclude that x ∈ {0,∞}.
Assume that x = 0; then, we must have K2 = 0. Since J ′ ≤ 0, we must have K1 < 0, which leads to

a contradiction as J ≥ 0. We conclude that x = ∞, so K1 = 0 and we must have K2 > 0 in order to

have u ≥ 0. The boundary condition at u = 1 translates into:

1 = −K2H
′
2(x∗)

(k − i)x∗H ′2(x∗) = kH ′2(x∗)− (1 + i)H2(x∗).

We deduce that interval I must be of the form [x∗,∞), with x∗ > 1. Next we establish the existence

and uniqueness of x∗.

Appendix B

Existence and Uniqueness of x∗. We want to show that function ϕ2 has a unique root x∗ > 1,

where

ϕ2(x) = k(ax− 1)
H ′2(x)

H2(x)
+ 1 + i, (18)

with a = k−i
k ∈ (0, 1). Let z = a − 1

x , so that x = 1
a−z ; Define φ2(z) = z

∫ 1
0 e

Λ(z−a)tt−β2 (1−t)β1−1dt∫ 1
0 e

Λ(z−a)tt−β2−1(1−t)β1dt
=

−z+ z
∫ 1
0 e

Λ(z−a)tt−β2−1(1−t)β1−1dt∫ 1
0 e

Λ(z−a)tt−β2−1(1−t)β1dt
and observe that ϕ2(x) = kβ2φ2(z) + 1 + i. We want to show that φ2

is increasing in z. We have

φ′2(z) = −1 +

∫ 1
0 e

Λ(z−a)tt−β2−1(1− t)β1−1dt∫ 1
0 e

Λ(z−a)tt−β2−1(1− t)β1dt
+

ΛzΦ2(z)

D2
,
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where D =
∫ 1

0 e
Λ(z−a)tt−β2−1(1− t)β1dt and

Φ2(z) =

∫ 1

0
eΛ(z−a)tt−β2(1− t)β1−1dt×

∫ 1

0
eΛ(z−a)tt−β2−1(1− t)β1dt

−
∫ 1

0
eΛ(z−a)tt−β2−1(1− t)β1−1dt×

∫ 1

0
eΛ(z−a)tt−β2(1− t)β1dt.

Then, note that∫ 1

0
eΛ(z−a)tt−β2−1(1− t)β1dt =

∫ 1

0
eΛ(z−a)tt−β2−1(1− t)β1−1dt−

∫ 1

0
eΛ(z−a)tt−β2(1− t)β1−1dt∫ 1

0
eΛ(z−a)tt−β2(1− t)β1dt =

∫ 1

0
eΛ(z−a)tt−β2(1− t)β1−1dt−

∫ 1

0
eΛ(z−a)tt−β2+1(1− t)β1−1dt.

It follows that

Φ2(z) = −
(∫ 1

0 e
Λ(z−a)tt−β2(1− t)β1−1dt

)2

+
(∫ 1

0 e
Λ(z−a)tt−β2−1(1− t)β1−1dt

)
×
(∫ 1

0 e
Λ(z−a)tt−β2+1(1− t)β1−1dt

)
> 0,

by the Cauchy Schwartz inequality with

fa(t, z) = e
Λ
2

(z−a)tt−
β2+1

2 (1− t)
β1−1

2

ga(t, z) = e
Λ
2

(z−a)tt−
β2−1

2 (1− t)
β1−1

2 ,

so that fa(t, z)ga(t, z) = eΛ(z−a)tt−β2(1−t)β1−1. Finally, we note that −1+
∫ 1
0 e

Λ(z−a)tt−β2−1(1−t)β1−1dt∫ 1
0 e

Λ(z−a)tt−β2−1(1−t)β1dt
>

0. We conclude that φ′2 > 0. It follows easily that ϕ′2 < 0. As ϕ2 is continuous with ϕ2( k
k−i) = 1+ i > 0

and lim
x→∞

ϕ2(x) = (k − i)β2 + 1 + i < 0 by assumption A1, we conclude that ϕ2 has a unique root

x∗ > k
k−i > 1 and note that (k − i)β2 + 1 + i < 0 is necessary and sufficient.

∂x∗

∂k < 0 and ∂x∗

∂i > 0. Totally differentiating relationship (18) with respect to k and evaluating at

x = x∗ leads to

(x∗ − 1)
H ′2(x∗)

H2(x∗)
+ ϕ′2(x∗)

∂x∗

∂k
= 0.

Since ϕ′2(x∗) < 0 and (x∗ − 1)
H′2(x∗)
H2(x∗) < 0, we deduce that ∂x∗

∂k < 0. Similarly, totally differentiating

ϕ2(x∗) with respect to i leads to

−x
∗H ′2(x∗)

H2(x∗)
+ 1 + ϕ′2(x∗)

∂x∗

∂i
= 0.

Since ϕ′2(x∗) < 0 and −x∗H′2(x∗)
H2(x∗) + 1 > 0, we deduce that ∂x∗

∂i > 0.

Appendix C

Properties of the Optimal Investment Strategy.
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P.1. ∂π∗

∂k < 0 and ∂π∗

∂i > 0. Recall that function H2 is independent of parameters (k, i) and that

u =
H′2(x)
H′2(x∗) . Fixing u, we have

∂π∗

∂k
=

∂π∗

∂x

∂x

∂k

=
∂π∗

∂x

uH
′′
2 (x∗)

H
′′
2 (x)

∂x∗

∂k
< 0 as

∂π∗

∂x
> 0 and

∂x∗

∂k
< 0.

Similarly
∂π∗

∂i
=
∂π∗

∂x

uH
′′
2 (x∗)

H
′′
2 (x)

∂x∗

∂i
> 0 as

∂π∗

∂x
> 0 and

∂x∗

∂i
> 0.

P.2. For all u ∈ (0, 1), ∂π∗

∂u < 0. Recall that

π∗ = −µ− r
σ2

xH ′′2 (x)

H ′2(x)
.

As H2(x) ∼
∞
B(−β2, β1 + 1)xβ2 , we find that

xH′′2 (x)
H′2(x)

∼
∞
β2 − 1. Then, using the expressions found for

functions H ′2 and H ′′2 , we obtain that

−xH
′′
2 (x)

H ′2(x)
= (β1 − 1)

∫ 1
0 e
−Λt
x t1−β2(1− t)β1−2dt∫ 1

0 e
−Λt
x t−β2(1− t)β1−1dt

= (β1 − 1)(−1 +

∫ 1
0 e
−Λt
x t−β2(1− t)β1−2dt∫ 1

0 e
−Λt
x t−β2(1− t)β1−1dt

).

Let define two auxiliary functions ϕ and ψ with

ϕ(x) =

∫ 1

0
e−

Λt
x t−β2(1− t)β1−2dt

ψ(x) =

∫ 1

0
e−

Λt
x t−β2(1− t)β1−1dt,

so that

ϕ′(x) =
Λ

x2

∫ 1

0
e−

Λt
x t1−β2(1− t)β1−2dt

ψ′(x) =
Λ

x2

∫ 1

0
e−

Λt
x t1−β2(1− t)β1−1dt,

and let $(x) = ϕ(x)
ψ(x) . It follows that

d$(x)

dx
=
ϕ′(x)ψ(x)− ψ′(x)ϕ(x)

ψ2(x)
.
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Next observe that

ψ(x) =
Λ

x2
(

∫ 1

0
e−

Λt
x t−β2(1− t)β1−2dt−

∫ 1

0
e−

Λt
x t1−β2(1− t)β1−2dt)

ψ′(x) =
Λ

x2
(

∫ 1

0
e−

Λt
x t1−β2(1− t)β1−2dt−

∫ 1

0
e−

Λt
x t2−β2(1− t)β1−2dt).

Thus d$(x)
dx has the same sign as

ϕ′(x)ψ(x)−ψ′(x)ϕ(x) = −
(∫ 1

0
e−

Λt
x t1−β2(1− t)β1−2dt

)2

+

∫ 1

0
e−

Λt
x t2−β2(1−t)β1−2dt)×

∫ 1

0
e−

Λt
x t−β2(1−t)β1−2dt.

Finally, define

f(t, x) = e−
Λt
2x t1−

β2
2 (1− t)

β1
2
−1

g(t, x) = e−
Λt
2x t−

β2
2 (1− t)

β1
2
−1,

so that d$(x)
dx has the same sign as

−
(∫ 1

0
f(t, x)g(t, x)dt

)2

+

(∫ 1

0
f2(t, x)dt

)
×
(∫ 1

0
g2(t, x)dt

)
> 0 (Cauchy-Schwartz inequality).

We conclude that d$(x)
dx > 0 for all x. It follows that

dπ∗

du
=
∂π∗

dx
× ∂x

∂u
< 0 as

∂u

∂x
= −J ′′(x) < 0.

We deduce that for all u ∈ [0, 1], − f ′(u)
uf ′′(u) ≤ 1 − β2. Then, integrating this relationship and using

the fact that f ′(u) ∼
0
K0u

− 1
1−β2 , we find that for all u ∈ [0, 1], f ′(u) ≤ K0u

− 1
1−β2 , which implies that

f(u) ≤ β2−1
β2

K0u
β2
β2−1 .

Properties of Value Function F.

P1: F2 > 0, F22 < 0. F2(W,M) = f(u)− uf ′(u) = J(x) > 0. Then F22(W,M) = u2

M f
′′(u) < 0.

P2: ∂f(u)
∂cF

< 0. Let cF2 > cF1 given. Let F i denote the value function that corresponds to parameter

cFi , i = 1, 2. Using the HJB satisfied by F 1, it is easy to check that F 1 satisfies:

F 1(W0,M0) = max
π

E0

[∫ τ0∧∞

0
e−(θ+δ)t

[
(cF2 − cF1)Wt

[
(f1)′(ut)− 1

]
dt+ cF2Wtdt+ kdMt)

]]
s.t. dWt = (r − cF2)Wtdt+ (µ− r)πtWtdt+ σπtWtdwt − (k − i)dMt.

Recall we established that (f1)′(ut) = xt > 1. As (cF2 − cF1)Wt

[
(f1)′(ut)− 1

]
> 0, we deduce that

F 1 > F 2. Finally, since (1 + i)f(1) = (1 + k)x∗ − 1, we deduce that ∂x∗

∂cF
= 1+i

1+k
∂f(1)
∂cF

< 0.
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P3: ∂f(u)
∂k < 0 and ∂f(u)

∂i > 0. Recall that

f(u) = −H2(x)− xH ′2(x)

H ′2(x∗)
and u = − H ′2(x)

H ′2(x∗)
.

Fixing u ≥ 0, we have

∂f(u)

∂k
=

[H2(x)− xH ′2(x)]H ′′2 (x∗)

[H ′2(x∗)]2
∂x∗

∂k
+
xH ′′2 (x)

H ′2(x∗)

∂x

∂k

−uH ′′2 (x∗)
∂x∗

∂k
= H ′′2 (x)

∂x

∂k
.

Rearranging terms and simplifying, we find that ∂f(u)
∂k =

H2(x)H′′2 (x∗)

[H′2(x∗)]
2

∂x∗

∂k < 0. Similarly, ∂f(u)
∂i =

H2(x)H′′2 (x∗)

[H′2(x∗)]
2

∂x∗

∂i > 0.

Process x. Recall that for ut < 1,

dut =

[
(r − cF )ut −

(µ− r)2

σ2

f ′(ut)

f ′′(ut)

]
dt− µ− r

σ

f ′(ut)

f ′′(ut)
dwt.

Since ut = −J ′(xt), formally writing

dxt = µxtdt+ σxtdwt,

and applying Ito’s lemma for xt > x∗ leads to

dut = −
(
J ′′(xt)µxt +

1

2
J ′′′(xt)σ

2
xt

)
dt− J ′′(xt)σxtdwt.

Identifying the drift and the diffusion terms from the budget constraint, and using the fact that

xt = f ′(ut), ut = −J ′(xt) and f ′′(ut) = − 1
J ′′(xt)

, we find that

σxt = −µ− r
σ

xt

−(r − cF )J ′(xt) +
(µ− r)2

σ2
xtJ
′′(xt) = −J ′′(xt)µxt −

σ2
xt

2
J ′′′(xt).

Then, recall that function J is solution of (6), so differentiating both sides of (6) and rearranging

terms yields

(r − cF )J ′(x) = [(θ + δ − r + cF )x− cF )]J ′′(x) +
(µ− r)2

σ2
xJ ′′(x) +

1

2

(µ− r)2

σ2
x2J ′′′(x).

Given what precedes, this implies that we must have

µxt = (θ + δ − r + cF )x− cF .
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∂π∗

∂k < 0 and ∂π∗

∂i > 0. Recall that function H2 is independent of parameters (k, i) and that u =
H′2(x)
H′2(x∗) .

Fixing u, we have

∂π∗

∂k
=

∂π∗

∂x

∂x

∂k

=
∂π∗

∂x

uH
′′
2 (x∗)

H
′′
2 (x)

∂x∗

∂k
< 0 as

∂π∗

∂x
> 0 and

∂x∗

∂k
< 0.

Similarly
∂π∗

∂i
=
∂π∗

∂x

uH
′′
2 (x∗)

H
′′
2 (x)

∂x∗

∂i
> 0 as

∂π∗

∂x
> 0 and

∂x∗

∂i
> 0.

Appendix D

Appendix D1

Revenue Decomposition. Recall that for x > x∗ functions gk satisfies the following ODE

(θ + δ)gk(x) = [(θ + δ − r + cF )x− cF )]g′k(x) +
1

2

(µ− r)2

σ2
x2g′′k(x), (19)

with lim
∞

gk = 0. The solution of (19) that vanishes when x goes to ∞ is given by

gk(x) = −AkH2(x)

H ′2(x∗)
,

where Ak > 0 is a constant to be determined and recall that − H2(x)
H′2(x∗) = f(u)− uf ′(u). Furthermore

fk(1) = gk(x
∗) = −AkH2(x∗)

H ′2(x∗)

f ′k(1) = −
g′k(x

∗)

J ′′(x∗)
= −AkH

′
2(x∗)

H ′′2 (x∗)
.

As (1 + k)f ′k(1) = k + (1 + i)fk(1), solving for constant Ak leads to

Ak =
k

−(k + 1)
H′2(x∗)
H′′2 (x∗) + (1 + i)H2(x∗)

H′2(x∗)

.

To show that indeed Ak > 0, recall that

ϕ2(x) = k(ax− 1)
H ′2(x)

H2(x)
+ 1 + i,
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with ϕ2(x∗) = 0 and ϕ′2(x∗) < 0. We have

ϕ′2(x) = ka
H ′2(x)

H2(x)
+ k(ax− 1)

H ′′2 (x)

H ′2(x)
− k(ax− 1)

H ′2(x)

H2(x)

H ′2(x)

H2(x)
.

Then, using the fact that ϕ2(x∗) = 0 leads to

ϕ′2(x∗) = ka
H ′2(x∗)

H2(x∗)
− (1 + i)

H ′′2 (x∗)

H ′2(x∗)
+ (1 + i)

H ′2(x∗)

H2(x∗)

= −H
′′
2 (x∗)

H2(x∗)

[
−(k + 1)

H ′2(x∗)

H ′′2 (x∗)
+ (1 + i)

H2(x∗)

H ′2(x∗)

]
, as ka+ 1 + i = k + 1,

which indeed implies that Ak > 0 as ϕ′2(x∗) < 0 and −H′′2 (x∗)
H2(x∗) < 0. Next, observe that

f ′k(u) = −AkH
′
2(x)

H ′′2 (x)
= −Akuf ′′(u) > 0.

Finally, as π∗ is decreasing in u, we have 1 < f ′(u)

u(f ′′(u))2 (f ′′(u) + uf ′′′(u)), which implies that f ′′k < 0.

Finally
fk(u)

f(u)
= Ak(1−

uf ′(u)

f(u)
).

Using relationship (17), we find that lim
0−

fk(u)
f(u) = Ak

1−β2
, so in particular Ak < 1 − β2. Furthermore,

observe that
f(u)

uf ′(u)
= − H2(x)

xH ′2(x)
+ 1.

Following the same steps as for π∗ as for P.2. in Appendix C, one can show that function λ with λ(x) =

−xH′2(x)
H2(x) is increasing in x. Since, fk(u)

f(u) = Ak
1+λ(x) , we deduce that ∂

∂u

[
fk(u)
f(u)

]
= ∂

∂x

[
fk(u)
f(u)

]
× ∂x

∂u > 0 as

∂
∂x

[
fk(u)
f(u)

]
< 0 and ∂x

∂u < 0.

Appendix D2

Expected Time until next HWM Hit. Let f(x, a) = E[e−aτ ] be the Laplace transform of the

hitting time τ , for x0 = x > x∗ and a ≥ 0. Set a0 = θ+ δ − r+ cF , a1 = cF and a2 = 1
2

(µ−r)2

σ2 , so that
a0
a2

= 1− β1 − β2 and a1
a2

= Λ. For x > x∗, function f is a smooth function that satisfies the following

ODE for

af(x, a) = (a0x− a1)f1(x, a) + a2x
2f11(x, a),

with f(x∗, a) = 1 and lim
x→∞

f(x, a) = 0. The solution is given by

f(x, a) =
( x
x∗

)β2,a

∫ 1
0 e
−Λt
x t−β2,a−1(1− t)β1,adt∫ 1

0 e
− Λt
x∗ t−β2,a−1(1− t)β1,adt

,
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where β1,a and β2,a are respectively the positive and negative roots of the quadratic Qa with

Qa(y) = a2y
2 + (a0 − a2)y − a.

Observe that as a goes to 0, we have

β1,a ∼
0
β1 + β2 −

a

a0 − a2
and β2,a ∼

0

a

a0 − a2
.

It follows that E[τ ] = −∂f(x,a)
∂a |a=0

. Note that

β2,a

∫ 1

0
e−

Λt
x t−β2,a−1(1−t)β1,adt = −Λ

x

∫ 1

0
e−

Λt
x t−β2,a(1−t)β1,a+1dt−(β1,a−β2,a+1)

∫ 1

0
e−

Λt
x t−β2,a(1−t)β1,adt.

We are now ready to take a Taylor expansion of order 1 in variable a around a = 0.

−Λ

x

∫ 1

0
e−

Λt
x t−β2,a(1− t)β1,a+1dt− (β1,a − β2,a + 1)

∫ 1

0
e−

Λt
x t−β2,a(1− t)β1,adt

= −Λ

x

∫ 1

0
e−

Λt
x (1− t)2−a0

a2 (1− a

a0 − a2
ln[t(1− t)])dt

−(1− a0

a2
− 2a

a0 − a2
)

∫ 1

0
e−

Λ1t
x (1− t)1−a0

a2

(
1− a

a0 − a2
ln[t(1− t)]

)
dt.

The term of order 0 is given by

−
∫ 1

0
e−

Λt
x (1− t)β1+β2

[
Λ(1− t)

x
+ 1 + β1 + β2

]
dt = −1,

whereas the term of order 1 is given by

a

a0 − a2
×
∫ 1

0
e−

Λt
x (1− t)β1+β2

[(
Λ(1− t)

x
+ 1 + β1 + β2

)
ln[t(1− t)] + 2

]
dt.

Let denote

A(x) =

∫ 1

0
e−

Λt
x (1− t)β1+β2

[
1 +

(
Λ(1− t)

x
+ β1 + β2 + 1

)
ln t

]
dt.

=

∫ 1

0
e
− a1t
a2x (1− t)1−a0

a2

[
1 +

(
a1(1− t)
a2x

+ 2− a0

a2

)
ln t

]
dt.

It follows that

f(x, a) =

(
1 +

a

a0 − a2
ln

x

x∗

)( −1 + a
a0−a2

A(x)

−1 + a
a0−a2

A(x∗)

)
+ o(a)

= 1 +
a

a0 − a2

(
ln

x

x∗
+A(x∗)−A(x)

)
+ o(a).
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We deduce that

E[τ ] =
1

(β1 + β2)1
2

(µ−r)2

σ2

(
ln

x

x∗
+A(x∗)−A(x)

)
.

Appendix E: Large Drawdown Prohibited

Appendix E1: No Management Fee cF = 0

Proof of proposition 3. Set x∗∗α = f ′(α) and x∗α = f ′(1). We want to show existence and unique-

ness of the following system S

α = −β1K1(x∗∗α )β1−1 − β2K2(x∗∗α )β2−1 (20)

0 = β1(β1 − 1)K1(x∗∗α )β1−1 + β2(β2 − 1)K2(x∗∗α )β2−1 (21)

1 = −β1K1(x∗α)β1−1 − β2K2(x∗α)β2−1 (22)

k − i
1 + i

x∗α =
k

1 + i
+K1(x∗α)β1 +K2(x∗α)β2 , (23)

with 0 < x∗α < x∗∗α . Combining relationships (20) and (21) leads to

K1(x∗∗α )β1−1 = − 1− β2

β1(β1 − β2)
α < 0

K2(x∗∗α )β2−1 = − β1 − 1

β2(β1 − β2)
α > 0.

Then, combining relationships (22) and (23) leads to

K1(x∗α)β1 =
1

β1 − β2

[
−(β2

k − i
1 + i

+ 1)x∗α +
β2k

1 + i

]
K2(x∗α)β2 =

1

β1 − β2

[
(β1

k − i
1 + i

+ 1)x∗α −
β1k

1 + i

]
.

Then set $ = x∗α
x∗∗α

< 1. Eliminating constants K1 and K2, we find that

−1− β2

β1
αx∗α$

β1−1 = −(β2
k − i
1 + i

+ 1)x∗α +
β2k

1 + i

−β1 − 1

β2
αx∗α$

β2−1 = (β1
k − i
1 + i

+ 1)x∗α −
β1k

1 + i
.

Eliminating x∗α yields

α[(1− β2)$β1−1 + (β1 − 1)$β2−1] = β1 − β2. (24)

For z ∈ (0, 1], define auxiliary function Φ with

Φ(z) = α
(

(1− β2)zβ1−1 + (β1 − 1)zβ2−1
)
− (β1 − β2).
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Φ is a continuously differentiable function with

Φ′(z) = α(1− β2)(β1 − 1)zβ2−2
(
zβ1−β2 − 1

)
< 0 for all z ∈ (0, 1).

Hence, Φ is strictly decreasing with lim
0+

Φ =∞ and Φ(1) = (α− 1)(β1 − β2) < 0. We conclude that Φ

has a unique root $ in (0, 1) than is independent of k. Furthermore, totally differentiating relationship

(24) with respect to α leads to

(1− β2)$β1−1 + (β1 − 1)$β2−1 + Φ′($)
∂$

∂α
= 0,

so we can conclude that ∂$
∂α > 0. We still need to check the condition x∗α > 0 or equivalently

k−i
1+i + 1

β2
− 1−β2

β1β2
α$β1−1 > 0, i.e.,

β1((k − i)β2 + 1 + i)− α(1− β2)(1 + i)$β1−1 < 0.

Set $∗ =
[
β1((k−i)β2+1+i)
α(1+i)(1−β2) ∨ 0

] 1
β1−1 ≥ 0. It is easy to verify that above condition is met whenever

$ > $∗, or equivalently Φ($∗ ∧ 1) > 0. We find that

x∗α =
β2β1k

β1((k − i)β2 + 1 + i)− α(1− β2)(1 + i)$β1−1
.

At u = 1, we have (1 + k)f ′(1) = k + (1 + i)f(1) and recall that x∗α = f ′(1). As clearly ∂f(1)
∂α < 0, we

obtain that ∂x∗α
∂α < 0. Then, as x∗∗α = x∗α

$ , we get ∂x∗∗α
∂α < 0 and, we can recover constants K1 and K2.

Since K1 = − 1−β2

β1(β1−β2)α(x∗∗α )1−β1 , we deduce that ∂K1
∂α < 0. Finally observe that

π∗ = −µ− r
σ2

β1(β1 − 1)K1x
β1−1 + β2(β2 − 1)K2x

β2−1

β1K1xβ1−1 + β2K2xβ2−1

= −µ− r
σ2

[
β1 − 1− (β1 − β2)

β2K2

β1K1(f ′(u))β1−β2 + β2K2

]
,

which is increasing in u as f ′ > 0, K1 < 0 and K2 > 0.

∂π∗

∂α < 0. Recall that u = −β1K1x
β1−1 − β2K2x

β2−1, so, fixing u, we have

1

x

∂x

∂α
= −

β1x
β1−1 ∂K1

∂α + β2x
β2−1 ∂K2

∂α

β1(β1 − 1)K1xβ1−1 + β2(β2 − 1)K2xβ2−1
.
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Since π∗ = −µ−r
σ2

f ′(u)
uf ′′(u) = µ−r

σ2u

(
β1(β1 − 1)K1x

β1−1 + β2(β2 − 1)K2x
β2−1

)
, it follows that

∂π∗

∂α
= −µ− r

σ2u

(
β1(β1 − 1)

∂K1

∂α
xβ1−1 + β2(β2 − 1)

∂K2

∂α
xβ2−1

+ (β1(β1 − 1)2K1x
β1−1 + β2(β2 − 1)2K2x

β2−1)
) 1

x

∂x

∂α

= −(µ− r)xβ1+β2−1

σ2u

β1β2(β1 − β2)((β2 − 1)K2
∂K1
∂α − (β1 − 1)K1

∂K2
∂α )

−β1(β1 − 1)K1xβ1 − β2(β2 − 1)K2xβ2
.

Since −β1(β1 − 1)K1x
β1 − β2(β2 − 1)K2x

β2 = −x2J ′′(x) < 0, we conclude that ∂π∗

∂α has a constant

sign, independent of u. Then

π∗1 =
µ− r
σ2

(
β1(β1 − 1)K1(x∗α)β1−1 + β2(β2 − 1)K2(x∗α)β2−1

)
= −µ− r

σ2x∗α

1

β1 − β2

(
β1(β1 − 1)

[
−(β2

k − i
1 + i

+ 1)x∗α +
β2k

1 + i

]
+ β2(β2 − 1)

[
β1(

k − i
1 + i

+ 1)x∗α −
β1k

1 + i

])
=

µ− r
σ2

β1β2

(
k

1 + i

1

x∗α
− k − i

1 + i
− β1 + β2 − 1

β1β2

)
.

It follows that
∂π∗1
∂α = −µ−r

σ2 β1β2
k

1+i
1

(x∗α)2
∂x∗α
∂α < 0, as ∂x∗α

∂α < 0. The desired results follows.

Imposing fα(α) = 0 instead of π∗(α) = 0. This is the condition imposed in Lan, Wang and Yang

(2012). Condition (21) is now replaced by Jα(x∗∗α ) + αx∗∗α = 0. We find that

K1(x∗∗α )β1−1 = − 1− β2

β1 − β2
α < 0

K2(x∗∗α )β2−1 = − β1 − 1

β1 − β2
α < 0,

and using condition (22) leads to

α[(1− β2)β1$
β1−1 + (β1 − 1)β2$

β2−1] = β1 − β2,

where $ = x∗α
x∗∗α

. For z > 0, define auxiliary function Ψ with

Ψ(z) = α
(

(1− β2)β1z
β1−1 + (β1 − 1)β2z

β2−1
)
− (β1 − β2).

Ψ is a continuously differentiable function with

Ψ′(z) = α(1− β2)(β1 − 1)zβ2−2
(
β1z

β1−β2 − β2

)
> 0.

Since lim
0

Ψ = −∞, Ψ(1) = (α − 1)(β1 − β2) < 0 and lim
∞

Ψ = ∞, we deduce that Ψ admits a unique

root strictly greater than 1, so we must have $ > 1, i.e., x∗α > x∗∗α . Furthermore, since K1 < 0 and

K2 < 0, this implies that for all x in (x∗∗α , x
∗
α), we have J ′′α(x) > 0, i.e., for all u > α, f ′′α(u) > 0.

Value function fα is globally convex and thus cannot be solution of equation (14). In order to have a
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well-defined optimization problem (4), a leverage constraint is necessary such as for instance π ≤ πmax,

with πmax > 0, which optimally shall always binds.

Appendix E2: General Case. We want to show that system (S)

α = −K1H
′
1(x∗∗α )−K2H

′
2(x∗∗α )

0 = K1H
′′
1 (x∗∗α ) +K2H

′′
2 (x∗∗α )

1 = −K1H
′
1(x∗α)−K2H

′
2(x∗α)

k(ax∗α − 1) = K1(1 + i)H1(x∗α) +K2(1 + i)H2(x∗α), with a =
k − i
k

,

0 ≤ x∗α ≤ x∗∗α . Solving for K1 and K2 we find that

K1 =
(1 + i)H2(x∗α) + k(ax∗α − 1)H ′2(x∗α)

(1 + i)W (H1, H2)(x∗α)

K2 =
(1 + i)H1(x∗α) + k(ax∗α − 1)H ′1(x∗α)

(1 + i)W (H2, H1)(x∗α)

K1 = − αH ′′2 (x∗∗α )

W (H ′1, H
′
2)(x∗∗α )

< 0

K2 =
αH ′′1 (x∗∗α )

W (H ′1, H
′
2)(x∗∗α )

> 0.

(1 + i)H2(x∗α) + k(ax∗α − 1)H ′2(x∗α)

(1 + i)W (H2, H1)(x∗α)
=

αH ′′2 (x∗∗α )

W (H ′1, H
′
2)(x∗∗α )

(25)

(1 + i)H1(x∗α) + k(ax∗α − 1)H ′1(x∗α)

(1 + i)W (H2, H1)(x∗α)
=

αH ′′1 (x∗∗α )

W (H ′1, H
′
2)(x∗∗α )

. (26)

(1 + i)H2(x∗α) + k(ax∗α − 1)H ′2(x∗α)

(1 + i)H1(x∗α) + k(ax∗α − 1)H ′1(x∗α)
=
H ′′2 (x∗∗α )

H ′′1 (x∗∗α )
(27)

Note that function Φ2 where Φ2(x) = (1 + i)H2(x) + k(ax − 1)H ′2(x) = H2(x)ϕ2(x) is the product

of two (strictly) decreasing functions that are positive on (0, x∗). Then set Φ1 where Φ1(x) = (1 +

i)H1(x) + k(ax− 1)H ′1(x) = H1(x)ϕ1(x) with

ϕ1(x) = (1 + i) + k(ax− 1)
H ′1(x)

H1(x)
.

Following the exact same steps as in Appendix B and using the expressions for H1 and H ′1, one can

show that function ϕ1 is (strictly) increasing with lim
x→∞

ϕ1(x) = (k− i)β1 +1+ i > 0 and ϕ1(x) ∼
0
−kΛ
x2 .

We deduce that ϕ1 has a unique root x∗min and note that x∗min < 1. We conclude that Φ1 is increasing

and positive on (x∗min,∞). It follows that Φ = Φ2
Φ1

is decreasing and positive on (x∗min, x
∗) that takes

value in (0,∞). Then, observe that function
H′′2
H′′1

is a decreasing and positive function. By the Implicit

Function Theorem, we can write x∗α = Ψ(x∗∗α ), where Ψ is a positive increasing function, independent

of α, that takes value in (x∗min, x
∗) with lim

x→0
Ψ(x) = x∗min and lim

x→∞
Ψ(x) = x∗. We look for a fixed point
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x of Ψ. Using relationship (27) and rearranging terms, we find that x must satisfy

(1 + i)
[
H2(x)H ′′1 (x)−H1(x)H ′′2 (x)

]
= k(ax− 1)W (H ′1, H

′
2)(x).

Using the fact that function H1 and H2 are solutions of the (6) and the property of the Wronskian

yields

(1 + i) [(1− β1 − β2)x− Λ] = k(ax− 1)β1β2, with a =
k − i
k

,

which leads to

x =
Λ(1 + i)− kβ1β2

(1 + i)(1− β1 − β2)− (k − i)β1β2
. (28)

The condition (k − i)β2 + 1 + i < 0 implies that the denonimator of the above fraction is positive,

so indeed x > 0 . Therefore Ψ has a unique fixed point. Then, as Φ is decreasing and Φ(x) > 0,

Φ(x∗) = 0, it must be the case that x < x∗. Since we are looking for x∗α ≤ x∗∗α , we shall restrict our

attention to

x ≤ x∗α ≤ x∗ and x ≤ x∗∗α .

We already know that for α = 0, the solution is (x∗α, x
∗∗
α ) = (x∗,∞). Next, we show that for α = 1,

the solution is x∗α = x∗∗α = x. It is enough to that check x∗α = x∗∗α = x satisfy relationship (25) when

α = 1, which is indeed the case. Then, manipulating relationships (26) and (25) to eliminate the term

k(ax∗α − 1) leads to

W (H ′1, H
′
2)(x∗∗α ) = α

[
H ′′2 (x∗∗α )H ′1(x∗α)−H ′′1 (x∗∗α )H ′2(x∗α)

]
.

Fix x ≥ x, and for x ≤ y ≤ x, consider auxiliary function G(y;x) = H ′′2 (x)H ′1(y)−H ′′1 (x)H ′2(y). G is

a smooth function of y with

G′(y;x) = H ′′2 (x)H ′′1 (y)−H ′′1 (x)H ′′2 (y).

Notice that G(x;x) = W (H ′1, H
′
2)(x). We want to show that G′ < 0, or equivalently that function R

with R(z) =
H′′2 (z)
H′′1 (z)

is decreasing. We have

R′(z) =
W (H ′′1 , H

′′
2 )(z)

[H ′′1 (z)]2

=
β1β2(β1 − 1)(β2 − 1)x−4W (H1, H2)(z)

[H ′′1 (z)]2
< 0.

It follows that, given x ≥ x, function Γ with Γ(y;x) = G(x;x)
G(y;x) is strictly increasing for y ≤ x and

takes value in [0, 1]. Thus the equation Γ(y;x) = α has at most one root. Finally, consider auxiliary

function
∆ : [x,∞) → R

x 7→ Γ(Ψ(x);x).
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We have ∆(x) = 1 and

lim
x→∞

∆(x) = lim
x→∞

−β1β2Λβ2−β1Γ(−β2)Γ(β1 + 1)e−
Λ
x xβ1+β2−3

H ′′2 (x)H ′1(x∗)−H ′′1 (x)H ′2(x∗)

= lim
x→∞

−β1β2Λβ2−β1Γ(−β2)Γ(β1 + 1)e−
Λ
x xβ1+β2−3

−H ′2(x∗)β1(β1 − 1)Λβ2−β1xβ1−2

= 0,

as β2 − 1 < 0 and where we have used the fact that Ψ(x) = x and lim
∞

Ψ = x∗. By the Intermediate

Value Theorem, we deduce that the equation ∆(x) = α, with α < 1 has (at least) one root. Given

what procedes, it has at most one root, so the root is indeed unique. Finally, to show that J is strictly

convex, it is enough to show that for all x∗α < x < x∗∗α , we have

K1H
′′
1 (x) +K2H

′′
2 (x) > 0,

or equivalently

K1 +K2
H ′′2 (x)

H ′′1 (x)
> 0,

which is indeed the case as function
H′′2
H′′1

is a decreasing and K1 +K2
H′′2 (x∗∗α )
H′′1 (x∗∗α )

= 0.

Fund Manager Compensation Decomposition. Recall that g′k(x) = −J ′′α(x)f ′k(u) and fk(u) =

gk(x) so the boundary conditions at x = x∗α and x = x∗∗α are

Ak1H
′
1(x∗∗α ) +Ak2H

′
2(x∗∗α ) = 0

−(1 + k)
[
Ak1H

′
1(x∗α) +Ak2H

′
2(x∗α)

]
= J ′′α(x∗α) (k + (1 + i) [Ak1H1(x∗α) +Ak2H2(x∗α)]) .

Solving for (Ak1 , Ak2) yields the results.

Appendix F
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Table A1. Benchmark Regressions, Alternative Specifications.

Risk

Risk t 1 0.335*** 0.343*** 0.346*** 0.356*** 0.359*** 0.358***
(0.018) (0.018) (0.018) (0.010) (0.010) (0.010)

Distance to HWM 0.038*** 0.018*** 0.018*** 0.041** 0.042
(0.012) (0.006) (0.006) (0.020) (0.046)

Underwater 0.009***
(0.002)

Rank t 1 x 10 3 0.002** 0.004**
(0.001) (0.002)

Management fee 0.004*** 0.004***
(0.002) (0.002)

Incentive fee 0.001*** 0.001***
(0.000) (0.000)

Distance to HWM x Management fee 0.01 0.023
(0.008) (0.023)

Distance to HWM x Incentive fee 0.002** 0.000
(0.001) (0.000)

Log age (years) 0.004*
(0.003)

Return t 1 0.054***
(0.015)

N 8133 8133 8133 35552 35552 35552 4652
R sqr 0.334 0.337 0.336 0.228 0.23 0.23 0.742

Strategy fixed effects YES YES YES YES YES YES YES
Fund fixed effects NO NO NO NO NO NO YES
Year fixed effects YES YES YES YES YES YES YES

Change in Risk

The dependent variable in columns 1 6 is the change in standard deviation of monthly returns during

the 6 months that follow the aniversary of each fund's inception date relative to the previous 6

months. The first three columns only consider funds with inception in January, columns four through

six includes all. The dependent variable in column 7 is is the standard deviation of monthly returns

during the 12 months that follow the aniversary of each fund's inception date. The sample in column 7

includes only the funds with neither incentive fee nor HWM provision. Distance to HWM is the value

of the fund divided by the HWMminus one, that is, it corresponds to 0 when the fund is at the HWM

and decreases as the fund moves farther away from it. All variables are winsorized at the 1% level.

Standard errors are robust to heteroskedasticity and clustered at the management firm level.

Significance levels: * p<0.05, ** p<0.01, *** p<0.001
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