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Abstract

Why do rational politicians choose ine¢ cient policy instruments? Environmental regulation,

for example, often takes the form of technology standards and quotas even when cost-e¤ective

Pigou taxes are available. To shed light on this puzzle, we present a stochastic game with

multiple legislative veto players and show that ine¢ cient policy instruments are politically

easier than e¢ cient instruments to repeal. Anticipating this, heterogeneous legislators agree

more readily on an ine¢ cient policy instrument. We describe when ine¢ cient instruments

are likely to be chosen, and predict that they are used more frequently in (moderately)

polarized political environments and in volatile economic environments. We show conditions

under which players strictly bene�t from the availability of the ine¢ cient instrument.



1 Introduction

Over the years, the economics profession has converged at a set of e¤ective policy recom-

mendations for a wide variety of policy areas. For example, there is widespread agreement

that externalities can be more e¢ ciently internalized with Pigou taxes than with command-

and-control interventions, and that it is less distortionary to increase public revenue by elim-

inating economically unjusti�ed tax deductions and exemptions than by raising tax rates.

Likewise, economists have argued that some �scal consolidation policies are less harmful

than others. In practice, however, these recommendations are frequently ignored. Instead,

policy makers often intervene with strictly less e¢ cient policy instruments than others that

are as readily available. This paper concerns why such apparently irrational (other things

equal) political decisions might arise in a world of instrumentally rational agents.

To understand this puzzle, we present a dynamic political economy model in which the

government reacts to external shocks by choosing a policy from a given menu of policies, one

of which is unequivocally Pareto dominated by another available alternative. Indeed, the

ine¢ cient policy is not only Pareto dominated by the alternative at the time of adoption,

but in all possible states of the world. Nevertheless, we show that the ine¢ cient policy

intervention can arise naturally from a simple legislative bargaining model without any

extraneous frictions or informational asymmetries: it is the very ine¢ ciency of the policy

that makes it appealing to legislators. We further show that the availability of the ine¢ cient

policy instrument may, at least in equilibrium, improve the welfare of all policy makers.

Our legislative bargaining model rests on three characteristics. First, legislative policy

decisions involve multiple pivotal players. In particular, policy change requires the consent

of di¤erent veto players who may disagree on when to enact or repeal an intervention.

Second, the status quo policy in a dynamic, multi-period setting is endogenous: the policy

implemented in one period becomes the status quo in the next. Third, the environment is

subject to shocks across time that a¤ect the state-contingent policy preferences of the veto

players in any period, thereby creating the need for periodic renegotiations.

In a closely related model with only one available policy intervention, Dziuda and Loeper

(2016) observed that the three characteristics described above imply that the legislator who

is pivotal for introducing the intervention is distinct from the legislator pivotal for repealing

it. Consequently, the anticipation of her loss of political in�uence makes the legislator pivotal

for implementing the intervention less inclined to introduce it in the �rst place, fearing that

it will be hard to repeal should circumstances change. Loosely speaking, (Markov perfect)

equilibrium behavior involves political gridlock. In this paper, however, we show that when

players can choose not only whether, but also how, to intervene, the fear of future gridlock
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can induce an ine¢ cient policy intervention. Intuitively, the veto players can agree on an

ine¢ cient policy instrument because the ine¢ cient instrument will be easier to repeal. As a

result, there may be states of nature in which the more economically e¢ cient intervention is

not politically feasible, whereas the less e¢ cient intervention is approved by all veto players.

In particular, we characterize conditions under which the ine¢ cient policy instrument is

implemented with positive probability in equilibrium. Intuitively, for an ine¢ cient policy

response to be chosen by rational legislators, it must be the case that the ine¢ ciency is

su¢ ciently high for the more interventionist legislator to approve repealing the policy in

some states, and su¢ ciently low for the less interventionist legislator so that the ease of

repeal o¤sets the cost of ine¢ ciency for using the ine¢ cient policy in other states. For any

strictly positive level of ine¢ ciency, however, there are (nonpathological) distributions of the

state of nature under which legislators use the ine¢ cient instrument in all equilibria.

The theory links both the political system and the level of economic stability to the

choice of policy instrument. To see this, �x the level of economic stability and consider

the political system. If decisions require super-majorities or must be approved by multiple

legislative chambers or interest groups, then there is a larger set of veto players, and the

ideological distance between the two most extreme pivotal players is widened. Gridlock

can be substantial in these circumstances, creating room for the use of easily repealable

instruments. The relationship between ideological polarization and the use of ine¢ cient

instrument, however, turns out to be non-monotonic in our framework. The relative ease of

repealing ine¢ cient policies makes such policies attractive interventions for moderate levels

of ideological polarization, but not when ideological polarization is small or when it is large.

To see why, note that, when the pivotal players have su¢ ciently similar preferences, they are

likely to agree on when to repeal an e¢ cient intervention. Conversely, when their preferences

are su¢ ciently polarized, they are likely to disagree on when to repeal either type of policy

intervention, in which case the strategic bene�t of an ine¢ cient intervention is too small to

outweigh its cost.

To understand the e¤ect of economic volatility, �x the political system. For stable eco-

nomic environments, the current state of nature changes little over time and any policy

intervention can be expected to persist for quite some time. Consequently, the expected cost

of intervening with an ine¢ cient instrument is larger than the option value of being able to

repeal such a policy more readily. On the other hand, if the current economic environment

is volatile, the state of nature can vary considerably and the possibility of at least one veto

player preferring to repeal an intervention relatively quickly can be high. The relative ease

with which ine¢ cient interventions are repealed, therefore, makes use of such instruments

attractive in this situation.
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We show that all veto players can be strictly better o¤ in equilibrium if the ine¢ cient

intervention is available as a policy option. Hence, our paper not only o¤ers a rationale for the

use of ine¢ cient policy instruments, but also implies that they can be bene�cial given the

political constraints induced by a collective choice mechanism with multiple veto players.

The less interventionist player bene�ts from the availability of the ine¢ cient intervention

because it is easier to repeal, and the more interventionist player bene�ts because it makes

policy intervention politically feasible.

The model�s logic can be applied to a variety of settings. We mention four of these brie�y

here: infant industry protection, environmental regulation, �scal consolidation and �nancial

regulation.

Temporary protection of infant industries. Trade theorists (see, e.g., Bardhan

1971) have argued that in the presence of dynamic learning externalities, protecting an infant

industry from foreign competition (or protecting an established industry from a temporary

surge in foreign competition) can raise social welfare. The literature has further shown that

subsidies are preferable to tari¤s because they do not distort consumption and, because of

the double-dividend e¤ect, that tari¤s are preferred to quotas and other non-tari¤ barriers

to trade. However, an important condition for these measures to be socially desirable is

that they must be repealed when the industry matures (or when the temporary increase in

foreign competition vanishes), although policy makers do not know ex-ante when that will

occur (Melitz 2005). The logic of our model suggests that the more free-trade oriented party

might prefer to protect the domestic industry with ine¢ cient non-tari¤ barriers to trade

for fear that the more protectionist party will veto a repeal of more e¢ cient protectionist

policies. In fact, since WWII, governments have increasingly relied on non-tari¤ barriers to

trade to adapt trade policies to changes in trade �ows (Bagwell and Staiger 1990).

Environmental regulation. Despite the sometimes considerable di¤erences in perspec-
tive, economists from left to right tend to recommend Pigou taxes to regulate an externality

because they are cost-e¤ective, require little information, and o¤er a �double dividend�

whereby emission taxes generate public revenues that allow governments to reduce other

distortionary taxes.1 It is thus �a mystery�, according to some economists,2 why the Repub-

1Weitzman (1974) compared quotas and taxes in a setting with incomplete information and zero value
of the tax revenues. But starting with Tullock (1967), there is a large literature in economics on the double
dividend. While a �strong� version of it is controversial, the �weak� version� that the revenues reduce
overall distortions compared to a setting without these revenues� is generally accepted. Only the weak
version is required for the argument we make here. For surveys on the literature on the double dividend, see
Bovenberg (1999), Sandmo (2000), Goulder (2002), or Jorgensen et al. (2013). In part because of the double
dividend, all but four of �fty one prominent economists surveyed in 2011 agreed that a carbon tax would
be the less expensive way to reduce carbon-dioxide emissions. (http://www.igmchicago.org/igm-economic-
experts-panel/poll-results?SurveyID=SV_9Rezb430SESUA4Y)

2On this �mystery,� see: http://www.nytimes.com/2015/07/01/business/energy-environment/us-leaves-
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lican Party in the US blocked such a market-based policy during the Obama administration,

since doing so e¤ectively led to the command-and-control regulation of power plants intro-

duced by that administration in 2015. In line with our model, however, some key Republicans

may have anticipated that the administration would impose some curbs on the energy sector

regardless, forcing them to use ine¢ cient (command-and-control) instruments that would

be easier to repeal once Obama�s term was completed.3 And, at the time of writing, the

Republican administration is indeed working to repeal the regulations. It is hard to envision

that the same attempt would occur if the intervention to be repealed was an e¢ cient carbon

tax combined with a lump-sum subsidy or a tax o¤set.

Fiscal consolidation. Consider a country deciding how to consolidate its �scal policy
after a shock has put its public debt on an unsustainable path. Although its government

can do so along a variety of policy dimensions, we illustrate the logic of our argument by

considering only one possibility, namely whether to focus on increasing revenues or decreasing

outlays. Suppose, as the existing empirical evidence suggests, that a spending cut is less

contractionary and thus statically preferred by the policy makers to a tax increase. In

that case, the less interventionist veto player is the veto player ideologically least inclined

to implement a spending cut, that is, the liberal veto player. Our theory suggests that

the liberal veto player may veto the spending cut and support instead a more costly tax

increase in anticipation that, once the �scal situation improves, it will be easier to convince

the conservative player to decrease taxes than to increase spending to its pre-crisis level.4

Consistent with this logic, there is empirical evidence indicating that �scal adjustments

the-markets-out-in-the-�ght-against-carbon-emissions.html. While Pigou taxes are relatively rare also in-
ternationally, a famous exception is British Columbia, which introduced a carbon tax in 2008. Although
initially controversial, the tax has gained support from all important stakeholders thanks to the rebates
in other taxes that the revenues permit (http://www.nytimes.com/2016/03/02/business/does-a-carbon-tax-
work-ask-british-columbia.html?smid=pl-share&_r=0).

3Jim Manzi, a prominent conservative commentator on climate change, said openly that �a carbon tax
would be, mostly likely, a one-way door: Once we introduce it we�re stuck with it for a long time. What if our
economic and climate models are too aggressive, and there is no practical economic justi�cation for emissions
reductions [. . . ] There are very large potential regrets to a carbon tax.�(In �Conservatives, Climate Change,
and the Carbon Tax�, The New Atlantis, 2008 (21), 15-25)

4See Alesina et al. (2017) for a recent literature review. The �ndings of that literature are still subject to
intense debate, but we would like to point out that the logic of our model applies equally to the opposite case
in which a tax increase is more e¢ cient than a spending cut, the only di¤erence being that the interventionist
player is then the liberal veto player. Our �ndings can also be applied to the reverse problem of �scal stimulus.
In that case, the government must choose between a spending increase of a tax cut. The logic of our model
does not depend on which of the two is more e¢ cient in that case either, but suppose for concreteness
that tax cuts are more expansionary, as is suggested by the existing empirical evidence (see, e.g., Mankiw
2010 and the references therein). In that case, our model o¤ers the following rationale. After an economic
contraction, the liberal veto player foresees that if a tax cut is implemented, the conservative veto player
will be reluctant to increase taxes back to their pre-crisis level once the economy grows again. As a result,
the liberal veto player prefers a spending increase, because it will be easier to convince the conservative veto
player to cut spending once the crisis is over.
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based on spending cuts are longer-lived than �scal adjustments based on tax increases, i.e.,

the e¢ cient adjustment is more persistent than the ine¢ cient one (e.g., Alesina et al. 1998,

Alesina and Ardagna 2013).5

Financial regulation. Financial regulation tends to respond to �nancial crises. For
example, after the �nancial crisis of 2007-2008, the U.S. Congress passed the Dodd-Frank

Wall Street Reform and Consumer Protection Act. Although hailed by many as a step in

the right direction, it is a complex piece of legislation that others consider ine¢ cient. Its

provisions rely on heavy government regulation instead of price instruments recognized as

more e¢ cient at curbing systemic risk. Applying the same lens here as for the environmental

regulation example, the ine¢ ciencies can be viewed as a price paid by liberals to insure at

least some regulation was implemented and, from the perspective of the more laissez faire

members of Congress at the time, an acceptable intervention in response to the fallout

from the crisis but one that can be more easily unpacked in economically calmer times.

Consistent with this view, on June 9 2017, The Financial Choice Act, legislation that would

�undo signi�cant parts�of Dodd-Frank, passed the House 233-186.

Related literature. We are not the �rst ones to o¤er an explanation for why gov-

ernments implement ine¢ cient policies. However, the logic that underlies our argument is,

to the best of our knowledge, novel: ine¢ cient interventions are more likely to be repealed

should circumstances change, making them more likely to be accepted in the �rst place by

all veto players. On the abstract level, there are three main features that distinguish our

paper from the literature. First, the mechanism does not depend on the speci�cities of the

policy under consideration, or on how it interacts with the private sector or the electorate.

Instead, ine¢ ciency arises solely from the con�ict of interests between legislators and the

need to adapt the policy to a changing environment. Second, the ine¢ cient policy in our

model is ine¢ cient in a static sense: there exists a policy that gives a strictly greater �ow

payo¤ to all relevant decision makers in all states of nature. Third, the ine¢ cient policy

is not only the result of status quo inertia whereby a previously optimal policy becomes

obsolete. Instead, it is actively implemented by the policy makers.

The paper closest to ours is Dziuda and Loeper (2016), who analyze a similar model

except that they restrict the policy set to policies that are statically Pareto undominated

for some states. They show that ine¢ cient inertia occurs because each pivotal player fears

that policy changes approved by her will be hard to repeal when she wishes to do so. As a

5An alternative political economy explanation for why tax hikes might be chosen even when they are
less e¢ cient than spending cuts is that the latter hurt powerful constituencies such as retirees, or unions.
However, that explanation is harder to reconcile with the empirical �ndings that governments whose austerity
programs focus on spending cuts are no less likely to be reelected than those who focus on tax increase
(Alesina et al. 1998).
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result, the status quo can persist even when Pareto dominated. Hence, any ine¢ ciency takes

form of status quo inertia and any policy change is a Pareto improvement. Riboni and Ruge

Murcia (2008), Zapal (2011), Duggan and Kalandrakis (2012), Bowen et. al. (2017), and

Dziuda and Loeper (2018) consider related models of dynamic legislative bargaining which

also lead to policy inertia. Relative to these papers, our contribution is to show that adding

a Pareto ine¢ cient alternative to the policy space can mitigate this inertia. In particular,

legislators may adopt a Pareto-dominated policy change.6

Since our model requires policy makers to respond to shocks, it is related to the literature

on policy reforms. Alesina and Drazen (1991) show that legislators can engage in war of

attrition over who should bear the costs of reform. Fernandez and Rodrik (1991) show

that uncertainty over the distributional impact of reforms may sti�e them (see also Ali,

Mihm and Siga, 2017). Spolaore (2004) compares the likelihood of policy adjustment across

three stylized institutions. Unlike in our model, these papers consider the policy response

to a single shock after which legislators�policy preferences are �xed over time and all the

available policy adjustments are e¢ cient. In Strulovici (2010), an endogenous status-quo

bias arises if a majority learns that the new policy is bene�cial for them. Anticipating this

situation, policy makers may not want to try out new policies in the �rst place.7 In the

aforementioned papers, ine¢ ciency only takes the form of delays or failure to intervene. In

contrast, legislators act without delay in our model but the solution they adopt is ine¢ cient.

There is also a large political science literature that explores ine¢ cient policy making

due to structural characteristics of legislative decisionmaking (the �libuster, for instance,

or the committee structure). Important examples here include Krehbiel (1998) and Brady

and Volden (2006), among others, who explore models of gridlock and government inaction,

Ortner (2017) shows that gridlock is likely near the next election, and Weingast, Shepsle and

Johnson (1981) and Cox and McCubbins (2000) analyse legislative structure and ine¢ cient

6In a distributive environment, Bowen et. al. (2014) and Anesi and Seidmann (2015) show that the en-
dogenous status quo can lead to Pareto ine¢ cient policies, because they allow the proposer or the supporting
coalition to extract greater transfers in the future. These two papers analyze models in which preferences do
not evolve over time, as do most of the literature on dynamic policy making with an endogenous status quo.
Policy dynamics occur because the proposer changes (e.g., Baron 1996, Bernheim, Rangel and Rayo 2006,
Kalandrakis 2004, Anesi and Duggan 2017, Buisseret and Bernhardt 2017a), or because the same proposer
seeks the support of di¤erent coalitions over time (e.g., Diermeier and Fong 2011). In contrast, in our model,
each proposer always seeks the support of the same policy maker and the qualitative nature of policy ine¢ -
ciencies is, by and large, independent of the allocation of bargaining power. A di¤erent strand of literature
considers instead an exogenous status quo and assumes that the implemented policy in�uences future states
(see Hassler et al., 2003, for example). Baldursson and Von Der Fehr (2007) is closer to our story, as they
argue that a relatively �brown�party may prefer quotas rather than taxes, because the relatively ine¢ cient
quotas are essentially property rights that are di¢ cult to tighten or remove later.

7See also Dewatripont and Roland (1992, 1995) for related approaches in the context of economic tran-
sitions, where they argue that a gradualist approach to economic reform, although relatively ine¢ cient, can
be politically superior to a "big bang" approach to transition.
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public good provision more generally. To our knowledge, however, there is as yet no analysis

focusing directly on the deliberate strategic choice of ine¢ cient policy change when policy

change occurs.

Some papers have proposed rationales for ine¢ cient policy choices by a unitary actor,

whether a single legislator or a fully coordinated party or group. Unlike our model, these ex-

planations invoke aspects of the political economic environment other than legislative design.

In Coate and Morris (1995) and Acemoglu and Robinson (2001), ine¢ cient policy choices

arise from an incumbent legislator�s e¤orts to retain o¢ ce. Whereas the Coate and Morris

(1995) account rests on asymmetric information, Acemoglu and Robinson (2001) generate

policy ine¢ ciency from a model in which distortionary transfer payments are designed to

counter declining political support and in�uence. Tullock (1993), Grossman and Helpman

(1994), Becker and Mulligan (2003) and Drazen and Limao (2008) also focus on groups and

argue in various ways that any resource transfer increases wasteful lobbying (rent-seeking)

activity by those groups. By committing itself to ine¢ cient transfers, the government can

reduce the level of wasteful lobbying.

More generally, there is an extensive literature on policy distortions induced through

special interest groups�lobbying and campaign contribution activities (see Wright 1996 and

Grossman and Helpman 2001 for useful overviews of the literature). Aidt (2003) claims that

ine¢ cient command-and-control instruments are more bureaucracy intensive and, to the ex-

tent that bureaucrats in�uence policy design and derive value from implementing policy,

such interventions are favored by bureaucrats. At the electoral level, Canes-Wrone, Herron

and Shotts (2001) consider elections with asymmetric information and provide conditions

where incumbents seeking reelection can be expected to select policies contrary to voters�

(common value) interests. Similarly, in a model of international negotiations, Buisseret and

Bernhardt (2017b) �nd conditions under which e¢ cient agreements can be compromised

when one participating government is unsure of reelection. We abstract from electoral con-

siderations in order to highlight the ine¢ ciency of the legislative process per se. Alesina and

Passarelli (2014) and Masciandaro and Passarelli (2013) o¤er explanations of socially sub-

optimal policies that hinge on the median voter failing to internalize the costs and bene�ts

to others when policies have di¤erent distributional consequences. However, both available

policy choices are Pareto optimal in these papers. In contrast to these approaches, ine¢ -

ciency in our model does not depend on groups, informational asymmetries, or reelection

concerns.
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2 A Simple Example

In this section we present a stylized example to illustrate the key mechanism and to preview

some of our results. The mechanism requires two pivotal players, or legislators, L and R,

both of whom must approve any policy change. Speci�cally, at the start of any legislative

period, nature randomly chooses one legislator to propose a change in, or maintain, the status

quo policy. The other legislator has a veto right over any proposed change in the status quo.

Legislators start with no intervention, denoted by n; and can intervene by introducing either

an e¢ cient instrument p or an ine¢ cient instrument q: The �ow-payo¤ from policy n is

normalized at 0: Intervention gives everyone a bene�t �, and the costs associated with p and

q are wi and wi + ei, respectively, for i 2 fL;Rg. We assume that ei > 0 for each i, so that
ei is the additional bene�t of the e¢ cient instrument.

We can immediately make some simple observations:

Proposition 0 Suppose there is only one period. Then the ine¢ cient policy q is never

implemented in equilibrium.

Suppose now that there are two periods and let � > 0 be the common discount factor.

The status quo in the �rst period is n and the �rst-period policy decision becomes the status

quo in the second period. Assume further that there are only two states, � and �� > �; with
�� occurring with probability �, and suppose that the costs associated with p and q are such

that

wL < � < minfwL + eL; wRg � maxfwL + eL; wR + eRg < ��: (1)

The last inequality in (1) means that in state ��; both players prefer any type of intervention

to n. The �rst two inequalities in (1), however, imply that in state �, the less interventionist

player R prefers no intervention, while the more interventionist player L prefers to intervene

but only if the intervention is with the e¢ cient instrument. In terms of our environmental

application, �� can be interpreted as the usual state of the economy in which both parties agree

that environmental interventions are desirable, while � can be interpreted as an economic

downturn that makes the R party (but not the L party) want to repeal any regulation that

can compromise economic growth. In the case of �scal consolidation, � may be interpreted

as a business-as-usual state in which parties di¤er ideologically on whether public spending

should be cut, while �� can be interpreted as a �scal crisis state in which both parties are

willing either to cut spending or to increase taxes to bring public debt under control.

Consider the last period in this game. In state ��, both players strictly prefer p to any

other policy. So, independently of which player has proposal rights, p is implemented in that

state. What is implemented in the low state �, however, depends on the status quo. If n
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is the status quo, R does not approve (propose or accept, depending on the allocation of

proposal rights) any change in policy. Similarly, if p is the status quo, L does not approve of

any change in policy. Finally, if q is the status quo, then the two players agree that either n

or p are better than the status quo, but they disagree on which is best. In this situation, p

is implemented if L has the proposal power and n is implemented otherwise. This reasoning

implies that, in the second period, p is not repealable, although q can be repealable when the

realized state in that period is �.

Consider now the �rst period, and suppose the state is �� with status quo n. Both players�

�rst period �ow-payo¤s are maximized by policy p: But since p is not repealable, R may be

reluctant to approve such a change in policy. In particular, R does not approve p in the �rst

period if the bene�t of p relative to n in state �� is outweighed by the expected cost of being

stuck with p in state �; that is, if:

� � wR < � (1� �) (wR � �) : (2)

Thus, players fail to intervene e¢ ciently in the �rst period if the disagreement state � is

relatively likely (i.e., 1�� is high), if players are patient, and if R�s preference for intervention
in state � is relatively weak compared to R�s preference for no intervention in state �. On the

other hand, because q is more easily repealed than p, R may be willing to intervene with q:

Denoting by bL 2 [0; 1] the probability that L has the authority to make a take-it-or-leave-it
policy proposal in the second period, R approves an intervention q in the �rst period if

�� � wR � eR � � (1� �) bL (wR � �) : (3)

And since L receives a higher �ow-payo¤ from q than n in state ��, and the likelihood that a

change from status quo q to p in the second period exceeds that from n to p, L also prefers

and approves q over n in the �rst period. Finally, because players�share the same ordinal

policy preferences over n and q in both states, we have the following proposition.

Proposition 1 Suppose there are two periods and

� (1� �) bL (wR � �) + eR � � � wR < � (1� �) (wR � �) :

Then, in the �rst period of any subgame perfect equilibrium,

(i) intervention occurs in �� when the policy menu is fn; p; qg but not when the menu is fn; pg;
(ii) both players strictly prefer menu fn; p; qg to menu fn; pg.

The fact that e¢ cient policies are hard to repeal can make them politically impossible

to agree upon in a dynamic setting. At the same time, as part (i) of the proposition states,
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it is precisely because of its ine¢ ciency that both legislators may approve a �rst period

intervention with q in state �. And, as part (ii) of the proposition asserts, adding this

statically Pareto-dominated choice to the policy menu may not only result in its use, but it

also strictly improves equilibrium payo¤s for both players.

To our knowledge, the preceding claims are new to the literature. They are, however,

derived in a stylized example that raises a number of questions. For instance, the cost of

instrument q is limited since q will always be replaced by either n or p in the last period. But

what is the desirability of q in a dynamic model when there is no last period? Furthermore,

the binary state space in the example implies that instrument p will never be repealed once

implemented. But why should the players prefer q to p in a more general setting where both

interventions may eventually be repealed? To explore these and several other issues further,

the following section generalizes the model to an in�nite number of periods and to more

general distributions of states.

3 Model

Policies, payo¤s, and players. Two in�nitely lived players, L and R, must decide in each
period t 2 N which of three policies fn; p; qg to implement. Their preferences over these
policies in a given period t depend on the realization of the state of nature �t 2 R; and are
speci�ed as in the preceding example. That is, normalizing both players��ow-payo¤ from

policy n in any state � to zero, Ui(�; n) = 0, i 2 fL;Rg, player i�s �ow-payo¤ from policies

p and q relative to policy n in � are, respectively,

Ui (�; p) = � � wi; (4)

Ui (�; q) = � � (wi + ei).

Thus, ei is the period �ow-payo¤ gain for player i from implementing p instead of q in state

�. For simplicity, we assume this gain is independent of �. More importantly, we assume

that ei > 0 for both players. That is, intervention p Pareto dominates intervention q in all

states of nature. Although the state of nature does not a¤ect which intervention is best,

it a¤ects whether an intervention is needed in the �rst place: given the zero �ow-payo¤

from no intervention, n, player i gets a greater �ow-payo¤ from policy p than from policy n

when � � wi, and a greater �ow-payo¤ from q than from n when � � wi + ei. Importantly,
we assume that wL 6= wR; that is, in some states of nature, players disagree whether the

e¢ cient intervention p is preferred to no intervention n. By convention, L denotes the more
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interventionist player, so wL < wR.8

Timing of the game. Every period t 2 N starts with some status quo st 2 fn; p; qg,
with s0 = n. At the beginning of period t, both players observe the state �t 2 R. After �t is
observed, L and R must collectively choose a policy from the set fn; p; qg. We assume that
one player makes a take-it-or-leave-it o¤er to the other regarding which policy to implement.

The recognition probability for player i is denoted by bi (�; s) ; which may depend on the

current state � and status quo s. We assume that bi is bounded below by some b > 0:

The recognized proposer o¤ers a policy yt 2 fn; p; qg . If the other player, the veto-player,
accepts this proposal, then yt is implemented; otherwise, the status quo st stays in place.

The policy implemented in t, whether the proposal yt or the status quo st, generates the

�ow-payo¤ for that period, as measured by (4), and becomes the status quo in the next

period, t+1. Each player maximizes her expected discounted payo¤over the in�nite horizon.

The common discount factor is � 2 (0; 1). For simplicity, we initially assume f�t : t � 0g
are distributed identically and independently over time according to some continuous c.d.f.

F with full support. The assumption is relaxed in section 5 to permit serial correlation.

Equilibrium concept. We denote the above game by � and restrict attention to

stationary Markov-perfect equilibria, referred to simply as �equilibria� in what follows. A

stationary Markov-perfect equilibrium is a subgame-perfect equilibrium in which players use

stationary Markov strategies. In this game, a strategy is stationary Markov if it depends only

on the current state, the current status quo, the identity of the proposer, and the current

proposal at the action node of the veto player.9 We let �i denote i�s stationary strategy and

write � = (�L; �R).

Since the focus of the paper is on the use of the ine¢ cient instruments, throughout most

of the paper we focus on equilibria with this property. To this end, the following de�nition

is useful.

De�nition 1 Let � be an equilibrium of �. Then, � is an instrument ine¢ cient equi-
librium (IE) if q is implemented with positive probability on the equilibrium path; � is an

8The terms �instrument� and �intervention� are used exclusively in reference to alternatives p and q.
The term �policy�may refer to any of the available alternatives, including n. This looseness should cause
no confusion. Also, we say that a policy p or q is �repealed�when it is the status quo and players agree to
replace it by n:

9Thus, a stationary Markov strategy for player i 2 fL;Rg consists of two contingent actions. First, a
function that maps the current state and status quo into a policy proposal conditional on i being the proposer.
Second, a function that maps the current state, status quo, and proposal into a choice over accepting or
rejecting the proposal conditional on i being the veto-player. Mixed strategies are admissible. More formally,
writing �S for the set of probability distributions over a set S, i�s proposal strategy takes R� fn; q; pg into
� fn; q; pg; and i�s veto strategy takes R � fn; q; pg2 into � faccept; rejectg. The restriction to stationary
Markovian strategies is standard in the literature on dynamic bargaining with endogenous status quo. We
conjecture that qualitatively di¤erent equilibria would arise if history-dependence were allowed.
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instrument e¢ cient equilibrium (EE) otherwise.

Remarks on the assumptions. Some of the assumptions are made for simplicity and
relaxing themmay not change the results. In particular, binary policy levels are not necessary

for the results. To see this, suppose that players can choose any level of p or q and consider

a two-period example again. The ine¢ cient instrument q will not be used in the last period

and the set of states under which p is repealed will be independent of its level. The ine¢ cient

q at any level, however, will still be easier to repeal, and the logic of our paper applies.

However, three assumptions are crucial. First, the mechanics of the model rests on

multiple veto players. With a unicameral legislature taking decision under simple majority

rule, the policy maker i with the median wi would be the unique pivotal decision maker.

However, multiple veto players are natural in politics. Bicameralism, supermajority require-

ments, presidential veto power, or powerful interests groups imply the existence of a set of

veto-players, or pivots, whose approval is necessary and su¢ cient to enact a policy change.

In the case of a unicameral legislature taking decisions under a quali�ed majoritym 2
�
1
2
; 1
�
,

player L is such that exactly a fraction m of the wi�s are larger than wL and, for player R,

exactlym of the wi�s are smaller than wR. Thus, the degree of heterogeneity, or polarization,

wR � wL, increases in the majority requirement m.
Second, we assume away explicit side-payments. If the players could make unlimited side-

payments then only e¢ cient policies would be implemented in equilibrium. In particular,

policy p would be implemented when �t > (wL + wR) =2, and policy n would be implemented

otherwise. Explicit side payments, however, are rare and often unavailable in politics, partly

because there may not exist a third party that can enforce agreements on such transfers.

Third, we assume that any implemented policy stays in place until it is actively changed.

This is consistent with legislative practice. Most laws and policies enacted by the U.S.

Congress, for example, are permanent: they remain in e¤ect until a new legislative action

is taken. This is the case for mandatory spending policies, which include all entitlements,

currently about 60% of total federal spending (Austin and Levit 2010), constitutional amend-

ments, most statutes in the U.S. code, the Senate�s rules of proceedings, and international

treaties. Likewise, changes to the tax code are permanent unless legislators decide to attach

a sunset provision, that is, a clause that speci�es a period after which the relevant legislative

act automatically expires. Historically, attaching sunset clauses to legislation has been the

exception rather than the norm.10 Nevertheless, legislators are not prohibited from attaching

10See, e.g., Posner and Verneule (2002, pages 1672, 1694, and 1701) on the permanent nature of statutes,
the Senate�s internal rules, or international treaties. As for tax legislation, prior to the Bush administration,
the use of sunsets for changes in the tax code applied mainly to relatively small provisions known as �tax
extenders�and were of signi�cantly smaller scale (Gale and Orszag 2003; Mooney 2004).
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such limitations to any legislation, in which case the availability of sunset clauses seems, at

least prima facie, to remove the need for ine¢ cient instruments. In the online Appendix,

however, we present an example 1 that this is not necessarily the case. A careful analysis of

sunsets is beyond the scope of this paper.

4 Analysis

The following lemma states that an equilibrium exists, and that all equilibria have a relatively

simple structure: in any equilibrium of �; players behave as if they were playing a static

version of the game � (a single period) with �ow-payo¤ parameters (w�L; w
�
R; e

�
L; e

�
R) rather

than (wL; wR; eL; eR).11

Lemma 1 There exist equilibria in �. Moreover, for any equilibrium �, there exists a unique
tuple (w�L; w

�
R; e

�
L; e

�
R) 2 R4 such that the behavior prescribed by � is the same as the behavior

prescribed by an equilibrium of the game in which players play a single period of � with

payo¤s V �i (�; n) = 0 and
V �i (�; p) = � � w�i ,

V �i (�; q) = � � (w�i + e�i ).
(5)

All proofs are in the Appendix. We call fw�L; w�R; e�L; e�Rg the continuation payo¤ parameters
induced by � and note that they re�ect players� strategic preferences in the equilibrium,

that is, their policy preferences given continuation play �; as distinct from their exogenous

�ideological�preference parameters fwL; wR; eL; eRg.12

The main goal of this paper is to understand the strategic underpinnings of IE and why

they can be bene�cial. Therefore, for the sake of exposition, we focus only on IE. We �rst

derive the properties of IE (Section 4.1) and then focus on their existence (Section 4.2).

Before we proceed, however, let us say a few words about the EE. By de�nition, in any EE,

the ine¢ cient instrument is not used; hence, EE are essentially equivalent to the equilibria

of the two-alternative game of Dziuda and Loeper (2016). Dziuda and Loeper (2016) have

shown that in such equilibria, the more pro-intervention player distorts her votes in favor of

11This simple representation of the equilibria relies on the stationarity of � and on f�tg being i.i.d. (an
assumption we relax in Section 5). If � was nonstationary, the same expression would hold but the function
V �i and the parameters e�i and w

�
i would have to be indexed by the period t from which the continuation

payo¤ is computed. Likewise, if f�tg was not i.i.d., e�i and w�i would depend on �:
12Duggan and Kalandrakis (2012) provide a very general existence result for dynamic bargaining games

with an endogenous status quo. But to apply their result directly here requires violating our assumption that
U(�; p) � U(�; q) is constant in �. Although introducing some noise to the payo¤s, to ensure the di¤erence
is not locally constant, and letting that noise tend to zero is possible, the result would be a correlated
equilibrium that obscures the particular tradeo¤s of interest here.
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p, and the less pro-intervention player distorts her votes in favor of n. As a result, even EE

are ine¢ cient in that there is excessive status quo inertia: a policy that was once adequate

for the environment becomes obsolete, but players do not act. This kind of ine¢ ciency,

however, does not explain the puzzle outlined in the introduction, namely, why interventions

that are ine¢ cient in any state of the world are implemented. So IE di¤er from EE not in

whether the equilibrium path is ine¢ cient, but in the nature of ine¢ ciency.13

4.1 Properties of IE

The following proposition summarizes the main qualitative properties of an IE.

Proposition 2 Let � be an IE. Then the corresponding continuation payo¤ parameters
(w�L; w

�
R; e

�
L; e

�
R) satisfy the following inequalities for some distinct i; j 2 fL;Rg:

(i) w�i < w
�
j ;

(ii) e�j � 0 and e�i > 0;
(iii) w�i < w

�
j + e

�
j :

Part (i) of Proposition 2 states that in any IE, one player i 2 fL;Rg, is more interven-
tionist than the other player, j. Part (ii) states that, in equilibrium, players disagree on

the appropriate intervention. In all states, player i prefers using the e¢ cient instrument p

to the ine¢ cient policy q, whereas player j weakly prefers intervening with q rather than p.

Finally, part (iii) implies that, consistent with the intuition provided in the Introduction,

the ine¢ cient instrument q is easier to repeal than the e¢ cient instrument p. To see this,

assume p is the status quo. Then e�i > 0 implies player i always vetoes proposal q and, by

de�nition of w�i , i also vetoes proposal n for all states above w
�
i : Hence, in all such states,

the status quo p remains unchanged. Conversely, for all states below w�i ; i prefers n to any

instrument, so i prefers to repeal p. And since w�i < w
�
j ; j also prefers to repeal p. Thus, p

is repealed in all states below w�i . Both players, however, prefer n to q in all states below

w�j + e
�
j . So the inequality in part (iii) implies that q is repealed on a larger set of states

than is p.

When e�j = 0; the policy dynamics implied by Lemma 1 and Proposition 2 may be

quite complex due to possible mixing by player j. For e�j < 0, however, there are only

two possible equilibrium paths, illustrated in Figures 1 and 2 below, depending on whether

maxkfw�k + e�kg < w�j (Figure 1) or w�j < maxkfw�k + e�kg (Figure 2). For concreteness, in
Figures 1 and 2 we illustrate these two possibilities for the equilibria in which i = L and

13See an earlier version of this paper, Austen-Smith et al. (2016), for a characterization of EE.
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j = R.14 States are measured along the horizontal axis and policies are indicated by the three

shaded bars above this axis. An arrow identi�es an equilibrium policy change, conditional on

the status quo, for any realized state within the same interval of states as that in which the

arrow is drawn. For intervals of states where there is no arrow drawn, there is no equilibrium

policy change. The status quo at the start of any period in which there is a policy change is

indicated by the origin of the relevant arrow; the arrow head indicates the policy instrument

chosen to replace the status quo.

In Figure 1, for example, suppose that the status quo going into the current period is

n and the realized state is � 2 (maxkfw�k + e�kg; w�R). Player L, prefers to intervene with
p, but state � is high enough so that she prefers to intervene with either instrument rather

than stay with n. Player R prefers to intervene with q, as the expected bene�t from q being

easier to repeal outweighs the ine¢ ciency cost, but the di¢ culty of repealing p makes her

prefer no intervention n to p. Hence, q is the only alternative that dominates n for both

players in that state. As a result, q is implemented independently of who is the proposer, as

indicated by the upward-pointing arrow. On the other hand, if � > w�R, the intervention is

so desirable that both players prefer intervening with either policy instrument. Since they

di¤er with respect to their ordering of p and q, the implemented policy depends on who has

proposal power. This is indicated by labeling the upward-pointing arrows for such states by

the proposer�s identity. When the status quo is either p or q; the downward-pointing arrows

indicate those states in which the relevant instrument is repealed. As stated in Proposition

2, q is repealed for a larger set of states.

Figure 2 di¤ers from Figure 1 only in that the less interventionist player R, despite the

relatively low chance p will be repealed, is willing to accept p in some states for which L

is unwilling to accept the ine¢ cient alternative q. As a result, for � 2 (w�R; fw�L + e�Lg), R
is forced to propose p and, therefore, p is implemented independently of who has proposal

14Since wL < wR; it is natural to conjecture that necessarily, i = L. However, one can show that if eR > eL;
then for some F; there also exists an equilibrium in which i = R; so somewhat surprisingly w�R < w

�
L. In such

equilibria, the relatively more interventionist L approves p less frequently than R in equilibrium. Intuitively,
if eR is su¢ ciently large, then whenever R prefers to intervene at all, R strictly prefers to intervene with p
rather than q. But then, for status quo n and � very large, R would approve a proposal q by L. To hedge
against such a possibility, R�s best response strategy involves a bias against n when p is the status quo; that
is, if p is the status quo and the state is not-so-large as to warrant intervention (relative to wR), R blocks
repealing p. Hence, for large enough bias, w�R < w�L; which means that p stays in place for a larger set of
states that L would like. Anticipating R�s bias and the resulting inertia under status quo p, under status quo
n; L proposes to intervene with q rather than with p, rationalizing R�s best response bias. Nevertheless, we
show in the appendix (see Lemma 8) that there always exists an equilibrium such that w�L < w

�
R. However,

for some parameters, this equilibrium need not be IE.
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power.

Figure 1. An example of IE with both players choosing q for some states.

Figure 2. An example of IE with both players choosing p for some states.

4.2 Use of Ine¢ cient Instruments in Equilibrium

In this section, we investigate under which condition all equilibria are IE. The following

proposition shows that this can be the case for any payo¤ parameters (wL; wR; eL; eR). In

particular, no matter how ine¢ cient is the policy instrument q relative to p, all equilibria

may be IE.

Proposition 3 Let G be a c.d.f. with mean 0 and variance 1: For any (wL; wR; eL; eR) ;

there exists �d > 0 and intervals of positive length, � � (0; 1) and M � R, such that, for any
� 2 �, m 2M and d 2

�
0; �d
�
, all equilibria of � are IE for the c.d.f. F (�) � G

�
��m
d

�
.

The proposition is predicated on the observation that two things must be true of the

distribution of states for all equilibria to be IE. First, extreme states must be su¢ ciently

rare, i.e., d su¢ ciently small, else players would agree most of the time on whether or not to

intervene. As a result, their preferences over which instrument to use would not be distorted

by their expectation of future disagreements. Second, states in which players disagree about

repealing p but agree on repealing q must be su¢ ciently likely. Using Figures 1 and 2, this
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means that for d su¢ ciently small, for all equilibria �, the states around the mean m of the

distribution must be in the interval (w�i ;minkfw�k + e�kg).15

In the appendix (see Proposition 8 in the online appendix), we further show that q can

be implemented arbitrarily more frequently than p for some distributions G. For example,

if G is normal then, for any " > 0, there exist an m and v such that, under status quo n and

conditional on some intervention being implemented, the probability that q is implemented

relative to p is greater than (1� ").
The following proposition describes how the use of the ine¢ cient instrument hinges on

the degree to which q is ine¢ cient (parts (i) and (ii)) and the players�ideologies are polarized

(part (iii)).

Proposition 4 Fix � 2 (0; 1), the recognition probability functions bL and bR, and the c.d.f.
F . Then:

(i) For any (wL; wR), if all equilibria are IE for some (eL; eR), then all equilibria are IE for

all (e0L; e
0
R) such that e

0
L � eL and e0R � eR.

(ii) For any (wL; wR) and any eL > 0, there exists " > 0 such that all equilibria are IE for

any eR � ".
(iii) For any (eL; eR) ; and any average ideology (wL + wR)=2, there exists an EE as (wR �
wL)! 0. Furthermore, all equilibria are EE as (wR � wL)!1.

The comparative statics in Proposition 4(i) on eR is intuitive. If, for some eR, R approves

the ine¢ cient intervention q in exchange for an increase in the likelihood that the intervention

is repealed in the future, R also approves q for lower degrees of ine¢ ciency. The claim in

Proposition 4(i) regarding changes in eL, however, is less obvious, since an increase in eL
has two e¤ects. On the one hand, L approves repealing a status quo q for more states when

eL is large than when it is small. This, in turn, increases the strategic value of q for R. On

the other hand, since a larger eL implies that L�s payo¤ from q is smaller, L approves any

proposal to implement q in fewer states than when eL is not so large. Regardless of the value

of eL, however, for � large enough, L prefers q to n and R can be sure q is accepted and

implemented on the equilibrium path. In particular, the ine¢ cient policy instrument is used

because it is costly for player L, not because it is costly for player R. Thus, as 4(ii) con�rms,

the ine¢ cient instrument is always chosen (for su¢ ciently high states) if eR is small enough

(where "small enough" depends on wR, wL and eL).

It is informative to reformulate Proposition 4(i) in terms of players�polarization. Recall

that wi and wi+ ei can be interpreted as the ideological position of player i on how often to
15A similar result for the exclusive existence of EE also holds. For instance, for any m and �; one can

show that as d becomes su¢ ciently large, that is, as extreme states become su¢ ciently likely, all equilibria
are EE.
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intervene when using policy p and q, respectively. For a �xed (wL; wR), as eL increases and

eR falls, the gap between the players�thresholds on policy p remains una¤ected; for policy q,

however, the di¤erence between the two players decreases. Proposition 4(i) then says that

as players become less ideologically polarized about intervention q, they agree to use the

ine¢ cient, but more consensual, policy instrument q more often.

Part (iii) of Proposition 4 concerns how the equilibria change with changes in legislative

polarization on e¢ cient intervention. Given an average ideology, existence of an EE is assured

for su¢ ciently small polarization. Since the players�preferences are essentially aligned in

this case, players are likely to agree on the repeal of p when necessary, so they do not need

to resort to using ine¢ cient q: On the other hand, when polarization is su¢ ciently large,

the players are rarely aligned with respect to whether intervention is warranted. Thus, any

policy is unlikely to be repealed and the players perceive the decision as virtually permanent.

As in a static setting, both agree to an e¢ cient intervention if they agree to intervene at all.

In sum, therefore, part (iii) states that if an ine¢ cient instrument is used in any equilibrium,

then political polarization cannot be too small or too large.

4.3 The Value of Ine¢ cient Instruments

Empirically, the menu of available policy instruments can be endogenous. For example, if en-

vironmental policy is chosen at the local level, or by a regulatory body, then the instruments

that are available may be de�ned ex ante by the federal government and, in such cases, it is

not at all clear whether an ine¢ cient policy instrument would, or should, be made available

to decision makers. As argued in Section 2, there is no social welfare gain to be had from the

existence of q in a static environment; the question, then, is whether this holds in a dynamic

setting.

The next result states that, under certain conditions, both players are strictly better o¤

if the ine¢ cient intervention q is available, even if the e¢ cient intervention p is unavailable,

than if they are constrained to choosing only between n and p. In other words, allowing for

an ine¢ cient policy instrument can lead to Pareto superior equilibria in the dynamic game

because it overcomes gridlock.

Let � (n; p; q) denote the original game, � (n; p) the game in which the ine¢ cient instru-

ment is unavailable, and � (n; q) the game in which the e¢ cient instrument is unavailable.

Say that one equilibrium is Pareto superior to another if both players get a strictly greater

continuation payo¤ in the former.

Proposition 5 For any (wL; wR; eL; eR) and for a nonnegligible set of � 2 (0; 1), there

exists an F such that any equilibrium of � (n; p; q) and of � (n; q) is Pareto superior to any
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equilibrium of � (n; p).

Proposition 5 states that for any payo¤ parameters, one can �nd an environment F

in which having the ine¢ cient instrument q available on the menu is, relative to q being

unavailable, welfare-improving. Proposition 5, however, does not shed light on how the

bene�ts from q vary with the payo¤ parameters and F ; that is, in which environments one

should expect q to be welfare improving. Nevertheless, our previous results suggest some

conjectures in this regard. Clearly, q can be bene�cial to the players only if there is some

ideological disagreement between them, as only then q can be used in equilibrium. At the

same time, Proposition 4 implies that q is used only when players are not too polarized.

Consequently, players may bene�t from this policy for a given distribution F only when

their ideological polarization is moderate. Similarly, players are also more likely to bene�t

from q if q is not too ine¢ cient, but the ine¢ ciency for the less interventionist player L must

be su¢ ciently large to make q more easily repealed.

To investigate these conjectures, we consider an in�nite horizon extension of the example

in Section 2 with a distribution F having support f�; ��g. In this simple environment, we
have the following result.

Proposition 6 Suppose there exists � < �� and � 2 (0; 1) such that that, in every period t,
with probability 1� �; � (t) = � and with probability �; � (t) = ��.
(i) There never exists an equilibrium of � (n; p) that is Pareto superior to any equilibrium of

� (n; p; q).

(ii) There exists an equilibrium of � (n; p; q) that is Pareto superior to any equilibrium of

� (n; p) if and only if

wL < � � min fwi + eig � max fwi + eig < ��; and (6)

� (1� �) (wR � �) > (1� � (1� �))
�
�� � wR

�
: (7)

This statement holds unchanged if we replace � (n; p; q) by � (n; q) :

(iii) Furthermore, all equilibria of � (n; p; q) are Pareto superior to all equilibria of � (n; p)

if and only if (6), (7) and the following hold:

eL >
��

1� �
�
�� � wL

�
+
1� ��
1� � (� � wL) : (8)

Proposition 6 part (i) states that adding the ine¢ cient instrument to the menu of avail-

able policies cannot hurt both players. The intuition for this result is simple: in the two-state

environment, either players agree when to implement and repeal p, in which case adding q
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does not a¤ect the equilibrium paths, or they disagree, in which case the equilibria of � (n; p)

are gridlock equilibria and adding q can only help support a more responsive equilibrium,

which is bene�cial at least for the player who proposes q:

Part (ii) characterizes the conditions under which adding q can make both players strictly

better o¤. To understand the intuition for, and implications of, these conditions, note �rst

that condition (6) is essentially equivalent to the condition (1) in the two period example

of Section 2, and has a similar interpretation as in the two period setup.16 Speci�cally,

the last three inequalities in (6) mean that, when choosing between n and q; players�static

preferences are the same, so in the game � (n; q), there exists an equilibrium in which players

agree to implement n in state � and q in state ��. The �rst inequality in (6) means that p

is L�s most preferred policy in either state, so status quo p is never repealed. Hence, in the

game � (n; p), if n is the status quo and R�s preference for n over p in the low state � is

stronger than her preference for p over n in the high state ��, R will not approve intervening

with p and in any equilibrium, players will stay at n forever. This is assured by condition

(7), and in that case, both players are strictly worse o¤ in this no-intervention equilibrium

path than in the equilibrium path of � (n; q), described above.

Now consider the game � (n; p; q). Since, under (7), R does not approve p, adding p

to the game leaves the incentives underlying the equilibria of � (n; q) unchanged. Agreeing

to implement n in state � and q in state ��, therefore, is also an equilibrium of � (n; p; q)

and both players strictly prefer it to the unique equilibrium path of � (n; p). Hence, for the

ine¢ cient instrument to be bene�cial in some equilibrium, players�degree of polarization

must be su¢ ciently large so that they disagree su¢ ciently often on when to repeal p; but

not so large that they agree su¢ ciently often on when to repeal q:

Part (iii) shows that the additional condition (8) is required to ensure both players are

strictly better o¤ in all equilibria of � (n; p; q) relative to � (n; p). The reason is that staying

with n inde�nitely, as in the unique equilibrium path of � (n; p), may remain an equilibrium

in � (n; p; q), leaving L and R indi¤erent between the two games. To see how this can

occur, suppose that L threatens to approve only p if ever q is implemented. If such a threat

is credible, R never approves q and no intervention is ever implemented. Condition (8)

guarantees that no such threat is credible: when eL is su¢ ciently large, L prefers to accept n

rather than stay at q in state �. Thus, to guarantee that both players bene�t unambiguously

from the availability of q, q must be su¢ ciently ine¢ cient for the less interventionist players.

It is worth noting how the conditions of Proposition 6 depend on � and �. From (7) and

(8), the set of wR, wL and eL that satisfy these conditions expands as � falls. Hence, both

16The only di¤erence between condition (1) and (6) is that the former requires � < wR; but this extra
condition is implied by (7).
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players are more likely to bene�t from q if the state in which they disagree over interven-

ing with the e¢ cient policy becomes more likely. And as � increases and players become

more patient, the set of wR satisfying (7) increases and a welfare improving IE equilibrium,

therefore, becomes more likely. However, the right hand side of (8) �rst decreases and then

increases with �. Hence, to bene�t unambiguously from the presence of q, players should be

su¢ ciently, but not excessively, patient.17

5 Volatility and Persistent States

Until now, states, and thereby players�state-contingent preferences, have been assumed i.i.d.

draws over time. In many applications, however, there may be periods of relative stability

when players do not expect to change their positions, other things equal, and there may

also be periods in which new information about the desirability of an intervention arrives

frequently, resulting in frequent revisions of the relevant policy preferences.18 Our main

argument, therefore, that one reason for rational legislators to reject an e¢ cient policy in

favor of an ine¢ cient policy is because ine¢ cient policies are easier to repeal, is attenuated

to the extent that it depends essentially on the i.i.d. assumption. Consequently, we extend

the argument to a more general environment in which the i.i.d. assumption is relaxed to

permit serial correlation.

To capture the possibility that states may or may not persist across periods in an an-

alytically tractable way, and to allow for players�expectations regarding the persistence of

the current state to vary over time, consider, for every period t, a tuple (�t; vt) 2 R� [0; 1].
Assume the evolution of such tuples across periods satis�es the following transition property:

for all t,

(�t+1; vt+1) =

(
(�t; vt) with probability 1� vt
(�t+1; vt+1) � H with probability vt

;

whereH is some joint c.d.f.. As before, �t is the underlying policy-relevant state. We interpret

17The nonmonotonic impact of � on the value of ine¢ cient instument is not an artifact of the two-
state distributions considered in Proposition 6. Condition (6) guarantees that players are in full ideological
agreement when choosing between intervening with the ine¢ cient instrument q and no intervention n. This
makes q particularly attractive. If the distribution of the state has full support, su¢ ciently patient players
may introduce an ine¢ cient gridlock also to the choice between n and q. As a result, unlike in the two-state
case, q may not strictly improve both players�payo¤s if players are su¢ ciently patient and, further, an IE
may not exist.
18A painful example is the US Congressional response to the 2008 �scal collapse. For some years before the

2008 �scal collapse, the US economy was growing strongly and atypical Congressional economic interventions
were minimal. The fall of Lehman Brothers and the subsequent turmoil in much of the global economy led
to serious Congressional disagreement regarding the appropriate level and duration of any extraordinary
intervention, from whether to bail out banks or the car industry, to extensions of unemployment and welfare
bene�ts.
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the additional variable vt as a measure of volatility of the current policy-relevant state �t or,

equivalently, of players�period t expectations over �t+1. In each period t, the state �t persists

into period t + 1 with probability (1� vt) and, for simplicity, assume the volatility vt also
persists into period t+1; with probability vt, �t+1 and vt+1 are drawn according to the joint

c.d.f. H. Thus, the volatility of future state-contingent policy preferences is redrawn if and

only if the state-contingent policy preferences are redrawn.

Note that the evolution of the state collapses to the basic i.i.d. model if vt � 1 for all

t. Similarly, vt � 0 for all t implies preferences never change, while vt � v 2 (0; 1) for all t
implies the degree of volatility is �xed. With this in mind, we have the following result.

Proposition 7 In any equilibrium �, there exists �v 2 (0; 1] such that q is never implemented
when the realization of volatility is any v < �v; but q is implemented with positive probability

under status quo n if v > �v: Moreover, for any (wL; wR; eL; eR) ; for all � su¢ ciently close

to 1; there exists a distribution H with full support on R� [0; 1] such that, for all equilibria,
�v < 1:

Proposition 7 states that q is implemented on the equilibrium path only in su¢ ciently

volatile economic environments. Intuitively, when players expect the state to remain fairly

stable over time (vt � �v), strategic concerns regarding the possibility of con�ict over repealing
today�s intervention tomorrow, say, are muted and any intervention is e¢ cient. When the

economic environment is expected to be su¢ ciently volatile, however (vt > �v), today�s choice

is likely to need revision in the next period, making salient exactly the sorts of strategic

consideration underlying the use of ine¢ cient interventions.

6 Conclusion

The continued and widespread use of ine¢ cient policy interventions in more-or-less demo-

cratic political systems is a puzzle. For example, while economists uniformly recommend reg-

ulating emissions with Pigou taxes, technology and quantity controls are the most adopted

instruments in reality. Why would rational politicians agree on the use of Pareto dominated

policy instruments? In our model, an ine¢ cient policy intervention may arise even when

there is no salient legislative history or vested interest. Rather, an ine¢ cient policy may

be chosen precisely because it is ine¢ cient and the environment is expected to change in

the future. From this perspective, the puzzle alluded to above can be understood without

pointing to informational asymmetries, interest group in�uence, or di¤erential distributional

implications of alternative policy instruments among the electorate at large.
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With a heterogeneous legislature and multiple veto players, ine¢ cient interventions are

politically easier than e¢ cient interventions to repeal in dynamic environments subject to

policy-relevant stochastic shocks. And since ine¢ cient interventions are easier to repeal,

heterogeneous veto players, di¤erentiated only by the threshold shocks beyond which they

judge some policy intervention to be warranted, can be more willing to agree on responding

to a su¢ ciently severe downside shock with an ine¢ cient instrument. As a consequence,

ine¢ cient interventions are more likely to be used in (moderately) polarized political envi-

ronments and for issues where the fundamentals are subject to change over time.
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8 Appendix

8.1 Notations and Lemmas

Notation 1 For a given stationary Markov strategy pro�le �, the policy outcome in some
period t 2 N with status quo s (t) 2 fn; p; qg depends on the realization of � (t), the identity
p (t) of the proposer recognized in period t, and possibly players�private randomization devices

(�L (t) ; �R (t)) if the Markov strategy is mixed.
19 Let � (t) = (� (t) ; s (t) ; p (t) ; �L (t) ; �R (t))

denote the random variable that encodes all this information. We refer to � (t) as the state

of the world in period t: Let � denote the set of possible states of the world.

Note that f� (t) : t 2 Ng is i.i.d.. Let � denote its probability distribution.
For any state of the world � 2 �; � (�) denotes the corresponding realization of the state of
nature:

For all s; x 2 fn; p; qg ; �� (s; x) denotes the set of realizations of the state of the world for
which status quo s leads to outcome x:

The next lemma de�nes formally the continuation payo¤ parameters used in Lemma 1.

Lemma 2 (Continuation Payo¤) Let � be a Markov strategy pro�le, and let V �i (�; x)
denote the expected continuation payo¤ for player i 2 fL;Rg from implementing policy

x 2 fn; p; qg in period 1 conditional on �1 = �; and on players playing � from period 2

onwards. Then there exist unique w�i 2 R and e�i 2 R such that, for all � 2 R;

V �i (�; p)� V �i (�; n) = � � w�i ; (9)

V �i (�; p)� V �i (�; q) = e�i :

The parameters (w�i ; e
�
i ) correspond to the continuation payo¤ parameters introduced in

Lemma 1.

Proof. By de�nition, V �i (�; p)� V �i (�; n) is the sum of the �ow payo¤ gain from imple-
menting p instead of n in t = 1; which is �1 � wi; and � times the continuation payo¤ gain
from period 2 onwards from having s2 = p instead of s2 = n; given continuation play � in

t � 2: Using Notation 1, this means that

V �i (�; p)�V �i (�; n) = ��wi+ �
X

x;y2fn;p;qg

Z
��(p;x)\��(n;y)

(V �i (� (�) ; x)� V �i (� (�) ; y)) d� (�) :

19Formally, (�i (t))i2fL;Rg;t2N is a collection of random variables that are i.i.d. across periods and players,
and uniformly distributed on [0; 1] : Each player i privately observes �i (t) at the beginning of period t: A
mixed action for proposer (veto-player) i in period t can be represented as a piecewise constant function from
[0; 1] to fn; p; qg (to faccept; rejectg) which maps the realization of �i (t) into a proposal (veto) decision.
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Therefore, to prove the �rst line of (9), it su¢ ces to set

w�i � wi � �
X

x;y2fn;p;qg

Z
��(n;x)\��(p;y)

(V �i (� (�) ; x)� V �i (� (�) ; y)) d� (�) : (10)

An analogous reasoning on the continuation payo¤ gain from implementing p instead of q

proves the second line of (9) with

e�i � ei + �
X

x;y2fn;p;qg

Z
��(p;x)\��(q;y)

(V �i (� (�) ; x)� V �i (� (�) ; y)) d� (�) : (11)

Throughout the appendix, we say that a Markov strategy pro�le � is subgame perfect for

some continuation payo¤ parameters (wc; ec) 2 R4 if � prescribes actions that are subgame-
perfect when each player i 2 fL;Rg expects a continuation payo¤ Vi such that for all � 2 R;
Vi (�; p)� Vi (�; n) = � � wci and Vi (�; p)� Vi (�; q) = eci .

Lemma 3 (Equilibrium Continuation Payo¤s) A Markov strategy pro�le � is an equi-
librium if and only if � is subgame perfect for the continuation payo¤ parameters w� and e�

de�ned in Lemma 2. In that case,

w�i = wi + �

Z
��(p;p)\��(n;n)

(w�i � � (�)) d� (�)� �
Z
��(p;p)\��(n;q)

e�i d� (�) ; (12)

and

e�i = ei + �

Z
��(p;p)\��(q;q)

e�i d� (�) + �

Z
��(p;p)\��(q;n)

(� (�)� w�i ) d� (�) (13)

+�

Z
��(p;n)\��(q;q)

(w�i + e
�
i � � (�)) d� (�) :

Proof. The proof of the �rst claim follows immediately from our de�nition of subgame

perfection and Lemma 2, so we omit it for brevity.

Let us now derive (13). Consider the summands

e�i (x; y) �
Z
��(p;x)\��(q;y)

(V �i (� (�) ; x)� V �i (� (�) ; y)) d� (�)

on the R.H.S. of (11) for all possible policies x and y that can be implemented under status

quo p and q, respectively. Clearly, when x = y; e�i (x; y) = 0: Consider next the case

(x; y) = (q; n) ; that is, status quo p is replaced by q; and status quo q is replaced by n: Since
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� is an equilibrium, it is subgame perfect given continuation payo¤ parameters (w�; e�) ;

so for all � 2 �� (p; q) \ �� (q; n) ; both players must weakly prefer to implement q to p
and n to q in period 1: Moreover, one of them must be indi¤erent between implementing n

and q; because if both players strictly preferred to implement n to q in state v; then under

status quo p; either veto player would accept n; so proposing n instead of q in that period

would be a pro�table deviation for the proposer. Therefore, for all � 2 �� (p; q)\�� (q; n) ;
� (�)� w�i � e�i = 0 for some player i; but that can be satis�ed for exactly one � (�) : Since
F is continuous, this implies that � (�� (p; q) \�� (q; n)) = 0; so e�i (q; n) = 0: For the

case (x; y) = (p; n) ; an analogous reasoning implies that � (�� (q; p) \�� (p; n)) = 0 so

e�i (p; n) = 0: Consider now the case (x; y) = (q; p) ; that is, status quo p is replaced by q

and vice versa. If �� (p; q)\�� (q; p) is empty, e�i (q; p) = 0; and if it is not empty, subgame
perfection implies that for all � 2 �� (p; q) \ �� (q; p) ; V �i (�; p) = V �i (�; p) ; which means

that e�i = 0, so e
�
i (q; p) = 0. The only remaining cases are (x; y) equal to (p; q), (p; n), and

(n; q) ; so (11) can be simpli�ed as follows:

e�i � ei
�

=

Z
��(p;p)\��(q;q)

(V �i (� (�) ; p)� V �i (� (�) ; q)) d� (�)

+

Z
��(p;p)\��(q;n)

(V �i (� (�) ; p)� V �i (� (�) ; n)) d� (�)

+

Z
��(p;n)\��(q;q)

(V �i (� (�) ; n)� V �i (� (�) ; q)) d� (�) :

Substituting (9) into the above expression, we obtain (13).

The derivation of (12) follows a similar logic as the derivation of (13). The details are as

follows. Consider the summandsw�i (x; y) �
R
��(p;x)\��(n;y) (V

�
i (� (�) ; x)� V �i (� (�) ; y)) d� (�)

on the R.H.S. of (10) for all possible policies x and y that can be implemented under

status quo p and n, respectively. Using the same steps as the ones we used to prove

� (�� (p; q) \�� (q; n)) = 0 and reversing the role of p and q; we obtain that � (�� (p; n) \�� (n; q)) =
0; so w�i (n; q) = 0: An analogous reasoning implies that � (�� (p; q) \�� (n; p)) = 0; so

w�i (q; p) = 0. Moreover, for all � 2 �� (p; n) \ �� (n; p) ; each player i must be indi¤er-
ent between implementing n and p, so � (�) � w�i � e�i = 0, but that can be satis�ed for

exactly one � (�) : Since F is continuous, this implies that � (�� (p; n) \�� (n; p)) = 0, so

w�i (n; p) = 0. The only remaining cases left are (x; y) equal to (p; n), (p; q), and (q; n) :

Equation (12) follows then from substituting these three cases into the right-hand side of

(10) and using (9).

Proof of Lemma 1. The second claim of Lemma 1 follows immediately from our

de�nition of (w�; e�) in Lemma 2, and from Lemma 3. Equilibrium existence follows quite
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standard, thought tedious steps, and hence we relegate it to the online appendix (see Lemma

8). The proof proceeds as follows. Consider some arbitrary continuation payo¤ parameters

(w�; e�) such that w�L < w�R and e
�
L > 0. We �rst show that one can construct a strategy

pro�le � that is subgame perfect given continuation payo¤s (w�; e�) such that w�L < w�R
and e�L < 0: We then prove that the corresponding mapping (w

�; e�) ! (w�; e�) satisfy the

conditions of Brower�s �xed point theorem. Finally, we argue that from any �xed point of

that mapping, one can construct an equilibrium with the desired properties. Special care

is given to player�s behavior when indi¤erent between implementing p and q in order to

guarantee the continuity of the mapping in the neighborhood of e�R = 0:

Lemma 4 (Necessary and Su¢ cient Conditions for EE)

A) Let � be an EE. Then e�L > 0; e
�
R � 0; w�L < wL < wR < w�R; �� (q; q) � �� (p; p) ; and

for all i 2 fL;Rg ;

w�i = wi + �

Z w�R

w�L

(w�i � �) dF (�) : (14)

B) For any EE �; there exists an EE �0 such that players never accept nor propose q under

any status quo, w�
0
= w� and for all i 2 fL;Rg ;

e�
0

i = ei + �

Z min
n
w�L+e

�0
L ;w

�
R

o
w�L

bR (�; q) (� � w�i ) dF (�) : (15)

C) Reciprocally, if there exists (w�; e�) 2 R4 which satisfy e�R � 0 and the same conditions
as
�
w�; e�

0�
in (14) and (15), then there exists an EE � such that (w�; e�) = (w�; e�).

Proof. Part A: Let � be an arbitrary EE.
Step A1: w�L < w

�
R and for all i 2 fL;Rg ;

w�i = wi + �

Z
��(p;p)\��(n;n)

(w�i � � (�)) d� (�) : (16)

From Lemma 3, w�i satis�es (12). Since � is an EE, � (�
� (n; q)) = 0: Substituting the latter

equality into (12), we obtain (16). Taking di¤erences across players in (16) and solving for

w�R � w�L, we obtain w�R � w�L = wR�wL
1���(��(p;p)\��(n;n)) < 0:

Step A2: e�L � 0 and e�R � 0
Suppose that e�i < 0 for some i 2 fL;Rg : Then in any period t in which s (t) = n, the

proposer is i; and � (t) > maxk2fL;Rg fw�k + e�kg ; subgame perfection implies that the other
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player j must accept proposal q: Since q is the outcome that gives the greatest continua-

tion payo¤ to i in that state, the only subgame perfect action for i is to propose q, which

contradicts the assumption that � is an EE.

Step A3: modulo a zero measure set, �� (p; p) = f� 2 � : � (�) > w�Lg and �� (n; n) =
f� 2 � : � (�) < w�Rg :
For all � 2 � such that � (�) > w�L; L strictly prefers to implement p to n; so subgame

perfection implies that � =2 �� (p; n) : Since � is an EE, � (�� (p; q)) = 0: By de�nition of

��; (�� (p; x))x2fn;p;qg is a partition of �; so necessarily, � 2 �� (p; p). Conversely, for all
� 2 � such that � (�) < w�L; from Step A1, � (�) < w�R; so both players strictly prefer

to implement n to p: Therefore, subgame perfection implies that � =2 �� (p; p) : Since F is

continuous, the set of � such that � (�) = w�L has probability 0; which completes the proof

of the �rst equality in Step A3.

For all � 2 � such that � (�) < w�R; R strictly prefers to implement n to p; so subgame perfec-
tion implies that � =2 �� (n; p) : Since � is an EE, � (�� (n; q)) = 0: Since (�� (n; x))x2fn;p;qg
is a partition of �; necessarily, � 2 �� (n; n). Conversely, for all � 2 � such that � (�) > w�R
and, from Step A1, � (�) > w�L; both players strictly prefer to implement p to n: Therefore,

subgame perfection implies that � =2 �� (n; n) : The second equality in Step A3 follows then
from the fact that F is continuous.

Step A4: (w�L; w
�
R) satis�es (14) and w

�
L < wL < wR < w

�
R.

From Step A3, modulo a zero measure set, �� (p; p) \�� (n; n) is equal to the set of � 2 �
such that � (�) 2 (w�L; w�R). Substituting this equality into (16), we obtain (14). Step A1
and the assumption that F has full support implyZ w�R

w�L

(w�L � �) dF (�) < 0 <
Z w�R

w�L

(w�R � �) dF (�) :

Together with (14), the above inequalities imply that w�L < wL < wR < w
�
R:

Step A5: e�L > 0

Let us �rst prove that � (�� (p; n) \�� (q; q)) = 0: Suppose by contradiction that the latter
probability is positive. Then for some � 2 �� (p; n) \ �� (q; q) ; both players strictly prefer
to implement n to p and one player weakly prefers to implement q to n; so mini fw�i + e�i g �
� (�) < w�L and, therefore, mini fw�i + e�i g < w�L; a contradiction with Step A1 and A2.
From Lemma 3, e�i satis�es (13). Substituting � (�

� (p; n) \�� (q; q)) = 0 into (13), we

obtain

e�i = ei + �

Z
��(p;p)\��(q;q)

e�i d� (�) + �

Z
��(p;p)\��(q;n)

(� (�)� w�i ) d� (�) : (17)
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From Step A3, for almost all � 2 �� (p; p) ; � (�) > w�L; so (17) implies that e�L � eL > 0:
Step A6: �� (q; q) � �� (p; p)

For all � 2 �� (q; q) ; subgame perfection implies that one player weakly prefers to implement
q to n; so � (�) � max fw�L + e�L; w�R + e�Rg : From Step A1, A2, and A5, this implies that

� (�) > w�L and so, as shown in Step A3, � 2 �� (p; p).
Part B:
This step basically shows that for any EE �; there exists an �equivalent�EE �0 such that

(i) under status quo q; �0 prescribes players to play pure strategies which never implement q,

and (ii) under status quo n or p; �0 prescribe actions which lead to the same path of play as

�. We construct this strategy pro�le �0 as the limit of a sequence of strategy pro�les
�
�k
�
k2N

which we de�ne recursively as follows: �0 = �; and for all k 2 N; �k+1 is subgame perfect
given continuation payo¤

�
w�

k
; e�

k
�
; and when indi¤erent between two actions that lead to

outcome p or q; �k+1 always prescribes players to play the action that lead to p: The details

can be found in the online appendix.

Part C: See the online appendix.

Lemma 5 (Properties of IE) Let � be an IE and let �; % 2 fL;Rg be such that w�� � w�% :
Then e�% � 0 < e� < e��; w�� < w�% ; w�� < mini2fL;Rg fw�i + e�i g ; and �� (q; q) � �� (p; p) :

Proof. Let � be an arbitrary IE.
Step 1: � (�� (p; p) \�� (q; n)) > 0.

From Lemma 3, w�i satis�es (12). In any state � 2 �� (p; n) , each player i must prefer
implementing n to p so � (�) � w�i and, therefore, w

�
i + e

�
i � � (�) � e�i . Substituting the

latter inequality in (12), we obtain

e�i � ei + �

0B@ Z
(��(p;p)[��(p;n))\��(q;q)

e�i d� (�) +

Z
��(p;p)\��(q;n)

(� (�)� w�i ) d� (�)

1CA :
Regrouping the terms in factor of e�i yields

e�i �
ei + �

R
��(p;p)\��(q;n) (� (�)� w

�
i ) d� (�)

1� �� ((�� (p; p) [�� (p; n)) \�� (q; q)) : (18)

Suppose by contradiction that � (�� (p; p) \�� (q; n)) = 0: Then from (18), e�L > 0 and

e�R > 0; that is, both players always strictly prefer to implement p to q: But then q is never

implemented on the equilibrium path, which is impossible since � is an IE.
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Step 2: w�� < mini2fL;Rg (w
�
i + e

�
i ) :

For all � 2 �� (p; p)\�� (q; n) ; both players weakly prefer to implement n to q; i.e., � (�) �
w�i + e

�
i , and at least one player weakly prefers to implement p to n; i.e., � (�) � w�i , so

min
i2fL;Rg

w�i � � (�) � min
i2fL;Rg

(w�i + e
�
i ) :

From step 1, � (�� (p; p) \�� (q; n)) > 0, so the above inequalities must hold strictly for

some � 2 �� (p; p) \�� (q; n) ; which implies Step 2.
Step 3: e�% � 0 and e�� > e� > 0:

For all � 2 �� (p; p) ; at least one player weakly prefers to implement p to n; so � (�) � w��:
Since F is continuous, the latter inequality is strict for almost all � 2 �� (p; p) \ �� (q; n) :
Substituting this inequality and Step 1 into (18), we obtain e�� > e� > 0. As argued in Step

1, since � is an IE, e�� > 0 implies e
�
% � 0:

Step 4: �� (q; q) � �� (p; p) :
Let � 2 �� (q; q) : Since � is an equilibrium, in state � (�), one player must weakly

prefer implementing q to n, so � (�) � mini2fL;Rg fw�i + e�i g : From Step 2, this implies that

� (�) > mini2fL;Rg fw�i g ; in which case one player must strictly prefer to implement p to n so
� =2 �� (p; n) : From Step 3, e�� > 0 so � =2 �� (p; q) : Since (�� (p; x))x2fn;p;qg is a partition
of �; this implies that � 2 �� (p; p) ; as needed.
Step 5: w�� < w

�
% :

From Step 3, e�% � 0; so (18) implies
R
�2��(p;p)\��(q;n)

�
� (�)� w�%

�
d� (�) < 0. Therefore,

there exists �o � �� (p; p)\�� (q; n) such that � (�o) > 0 and, for all �o 2 �o, � (�o) < w�% ;
that is, % strictly prefers to implement n to p in state �o. Since �o � �� (p; p) and since � is
an equilibrium, � must weakly prefer to implement p to n in state �o, i.e., � (�o)� w�� � 0;
which implies w�� < w

�
% :

8.2 Proofs for Section 4

In this section, we prove Propositions 2 to 6. Note that since the proof of Propositions 3

and 5 rely on the proof of Proposition 6, we provide the latter before the former.

Proof of Proposition 2. Follows from Lemma 5 by setting i = � and j = %.

Proof of Proposition 4. The strategy of the proof is to realize that since an equilib-

rium can only be EE or IE, all equilibria are IE if and only if no EE exist. Lemma 4 can then

be used to provide a characterization of an EE in terms of its continuation payo¤. It implies

that EE exists if and only if there exists some continuation payo¤ parameters (w�; e�) that

satisfy equations (14) and (15) (setting �0 = � in the latter equation). One can then use

monotonicity arguments to derive conditions on the parameters under which such equations
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have no solution.

Step 0: Notations.

Throughout the proof, we �x �; b; and F: Consider �rst the necessary condition (14) for an

EE. This condition depends on (w; e) only through w; so letW (w) denote the set of w� 2 R2

that satisfy (14) for i = L;R. Consider then the necessary condition (15) for the type of EE

described in Lemma 4 part B for i = L :

e�L = eL + �

Z minfw�L+e�L;w�Rg

w�L

bR (�; q) (� � w�L) dF (�) : (19)

For any w� 2 R2 and eL 2 R, (19) can viewed as a �xed point in e�L: It depends on (w; e)
only through w� and eL; so let EL (w�; eL) denote the set of solutions e�L to (19). Since the

R.H.S. of (19) is continuous and bounded in e�L; EL (w
�; eL) is not empty and closed, so let

e�L (w
�; eL) denote its minimum. Finally, condition (15) for i = R gives

e�R = eR + �

Z minfw�L+e�L;w�Rg

w�L

bR (�; q) (� � w�R) dF (�) : (20)

Let e�R (w
�; e�L; eR) denote the R.H.S. of (20).

Step 1: for all w� 2 W (w), e�L (w
�; eL) is weakly increasing in eL; and e�R (w

�; e�L; eR) is

weakly increasing in eR; and weakly decreasing in e�L:

Since the R.H.S. of (19) is continuous in (eL; e�L) and weakly increasing in eL; from Villas

Boas (1997, Theorem 1), the smallest �xed point e�L (w
�; eL) of (19) is weakly increasing

in eL: The comparative statics on e�R (:) follow readily from (20) and the fact that for all

w� 2 W (w) ; w�L < w
�
R (see Step A1 in the proof of Lemma 4).

Step 2: no EE exists if and only if for all w� 2 W (w), e�R
h
w�; e�L (w

�; eL) ; eR

i
< 0.

From Lemma 4, an EE exists if and only if there exists (w�; e�) 2 R4 which satisfy the same
condition as w� and e�

0
in (14) and (15), and e�R � 0: Using the notations of Step 0, this

means that an EE exists if and only if there exists w� 2 W (w) and e�L 2 EL (w�; eL) such that
e�R (w

�; e�L; eR) � 0: From Step 1, this is the case if and only if e�R
�
w�; e�L (w

�; e�L) ; eR

�
� 0

for some w� 2 W (w).

Step 3: Proof of Parts (i) and (ii) of Proposition 4.

All equilibria are IE if and only if no EE exists. Therefore, Part (i) follows from Step 2,

together with the comparative statics established in Step 1. We now prove Part (ii) : Let

w� 2 W (w) : As shown in Step A1 in the proof of Lemma 4, w�L < w
�
R; so (19) implies that
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e�L (w
�; eL) � eL > 0: Finally, (20) implies that

lim
eR!0

e�R

�
w�; e�L (w

�; eL) ; eR

�
= �

Z minfw�L+e�L(w� ;eL);w�Rg

w�L

bR (�; q) (� � w�R) dF (�) :

Since F has full support and bR (�; q) > b > 0 for all � 2 R; the R.H.S. of the above equation
is strictly negative. From step 2, this implies that, for eR su¢ ciently small, no EE exists.

Step 4: Proof of Part (iii) of Proposition 4.

The case wR � wL ! +1 in Part (iii) is proved in the online appendix. Consider now

the case wR � wL ! 0, and suppose Proposition 4 is false. Then from step 2, there exists

a sequence
�
wk
�
k2N such that w

k
R � wkL ! 0 and for all k 2 N; for all ŵk 2 W

�
wk
�
;

e�R

�
ŵk; e�L

�
ŵk; eL

�
; eR

�
< 0: Taking di¤erences across players in (14), we obtain

ŵkR � ŵkL =
wkR � wkL

1� �
�
F
�
ŵkR
�
� F

�
ŵkL
�� � wkR � wkL

1� � ;

so ŵkR � ŵkL !k!1 0. Since ŵk 2 W
�
wk
�
; ŵkR > ŵ

k
L; so (20) implies

e�R

�
ŵk; e�L

�
ŵk; eL

�
; eR

�
� eR + �

Z ŵkR

ŵkL

bR (�; q)
�
� � ŵkR

�
dF (�) :

Since ŵkR � ŵkL !k!1 0 and F is continuous, the above inequality implies

e�R

�
ŵk; e�L

�
ŵk; eL

�
; eR

�
!k!1 eR > 0;

which contradicts the assumption that e�R
�
ŵk; e�L

�
ŵk; eL

�
; eR

�
< 0.

Proof of Proposition 6.
Part A: su¢ ciency part of Proposition 6 Part (ii). If (6) and (7) hold, there

exists an equilibrium of � (n; p; q) and of � (n; q) that is Pareto superior to any
equilibrium of � (n; p).
Assume (6) and (7) hold and de�ne the strategy pro�le �� (n; p; q) in the game � (n; p; q)

as follows: Under status quo n or q; in state � (��), both players propose and accept n (q),

they veto q (n), and in either states, R vetoes p and L accepts p: Under status quo p; L

proposes p and accepts only p, whereas R proposes p and accept any proposal. The path

of that strategy pro�le is as follows: under status quo n or q; n is implemented in state �

and q in state ��, and once p is implemented, p stays in place forever. Below, we characterize

the equilibria of � (n; p) (Step A1), we show both players strictly prefer �� (n; p; q) to any

equilibrium of � (n; p) (Step A2), and show that �� (n; p; q) is an equilibrium of � (n; p; q)
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(Steps A3 to A6). We then show that there exists an equilibrium �� (n; q) of � (n; q) that

has the same path as �� (n; p; q) ; and thus that also Pareto dominates any equilibrium of

� (n; p) (Step A7).

Step A1: In any equilibrium of � (n; p), the initial status quo n stays in place forever.

Let � be an equilibrium of � (n; p). From (6), wL < �; so L gets a strictly greater �ow

payo¤ from p than from any other policy in either state of nature. Therefore, on the path

of �; once p is implemented, p stays in place forever. Simple algebra shows that (7) means

that in state �� (and thus in state � as well), R strictly prefers implementing n forever to

implementing p forever. Therefore, in either state, given continuation play �; R strictly

prefers implementing n forever to p forever. Therefore, the equilibrium path stays at the

initial status quo n forever.

Step A2: Both players strictly prefer �� (n; p; q) to any equilibrium of � (n; p) :

The path of �� (n; p; q) implements n and q in state � and ��, respectively. From (6), both

players get a strictly greater payo¤ from q than from n in state ��, so they strictly prefer that

path of play to staying at n forever. Together with Step A1, this proves Step A2.

Step A3: Given continuation play �� (n; p; q) ; in any state, L strictly prefers implement-

ing p to n or q.

From (6), p gives a strictly greater �ow payo¤ to L than any other policy in any state, and

on the path of �� (n; p; q) ; p stays in place forever once implemented.

Step A4: Given continuation play �� (n; p; q) ; both players prefer implementing n to q

( q to n) in state � ( ��).

From (6), both players get a weakly greater �ow payo¤ from n than from q (from q than

from n) in state � (��). To conclude, note that under �� (n; p; q) ; status quo n or q lead to

the same outcome.

Step A5: Given continuation play �� (n; p; q) ; in any state, R strictly prefers implement-

ing n or q to p.

From Steps A1 and A2, R prefers playing implementing n today and playing �� (n; p; q)

thereafter to implementing n forever. As argued in the proof of Step A1, (7) means that in

either state, R strictly prefers n forever to p forever, which is what happens if p is imple-

mented and �� (n; p; q) is played thereafter. Therefore, given continuation play �� (n; p; q),

in either state, R strictly prefers implementing n to implementing p:

From Step A4, in state ��; R strictly prefers implementing q to n; so from what precedes, she

must strictly prefer implementing q to p in state ��: Since the �ow payo¤ di¤erence between

q and p is independent of �; R also strictly prefers implementing q to p in state �:

Step A6: �� (n; p; q) is an equilibrium of � (n; p; q).

From Steps A3, A4, and A5, one can readily check that for any status quo s 2 fn; p; qg ; in
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any state, either there is no policy x such that both players prefer implementing x to y; in

which case the actions prescribed by �� (n; p; q) implement y; or there is a unique such policy

x; in which case the actions prescribed by �� (n; p; q) implement x: Therefore, the actions

prescribed by �� (n; p; q) are subgame perfect given continuation play �� (n; p; q).

Step A7: there exists an equilibrium of � (n; q) that is Pareto superior to any equilibrium

of � (n; p).

By construction, under status quo n or q; �� (n; p; q) never prescribes player to make proposal

p: So �� (n; p; q) can be viewed as a strategy pro�le of the game � (n; q) ; and Step A4, it is

also an equilibrium of � (n; q) :

Part B: necessary part of Proposition 6 Part (ii). If there exists an equilibrium
of � (n; p; q) or � (n; q) that is Pareto superior to any equilibrium �� (n; p) of � (n; p),
then (6) and (7) must hold.
The proof consists in considering the following cases. First, if the �rst inequality of (6) is

violated, then players agree when to repeal p: In that case � (n; p) admits a Pareto optimal

equilibrium. Second, if any of the last three inequalities of (6) is violated, then players

disagree when to implement or repeal q, in which case making q available does not help

mitigate the gridlock problem that occurs with p: Third, if (7) is violated, then there exists

an equilibrium of � (n; p) in which R agrees to implement p and p stays in place forever,

which is the most preferred policy path of L: The details of that simple but tedious argument

can be found in the online appendix.

Part C: Proposition 6 Part (i). There never exists an equilibrium of � (n; p)
that is Pareto superior to all equilibria of � (n; p; q).
If �� � wR; then implementing n forever is the unique most preferred path of R: Since R can
unilaterally impose in � (n; p; q) and � (n; p), it is an equilibrium path of � (n; p; q), and no

other path can be Pareto superior to it.

If � � wL < wR < ��; then implementing n in state � and p in state �� is the most preferred
path of both players, so it is an equilibrium path of � (n; p; q), and no other path can be

Pareto superior to it.

Consider now the case wL < � < wR < ��, and assume �rst that (7) holds. Then as argued in

Step A1, in any equilibrium of � (n; p) ; the initial status quo n stays in place forever. This

path can be unilaterally imposed by either player in the game � (n; p; q), so either player

must weakly prefer any equilibrium of � (n; p; q) to the equilibrium path of � (n; p) :

Finally, suppose wL < � < wR < ��, and that (7) is violated. Since wL < �; p is the alternative

that gives L the greatest �ow payo¤ in both states, so in any equilibrium of � (n; p) and

� (n; p; q), L always accepts proposal p and p stays in place forever once implemented. That

(7) is violated means that in state ��, R prefers implementing p forever to implementing n

38



forever. Therefore, the only equilibrium path of � (n; p) stays at the initial status quo n as

long as the state is �, and moves permanently to p at the �rst occurrence of ��: Consider now

an equilibrium � of � (n; p; q) : If in state ��; R accepts proposal p under status quo n; then

L will propose p; and R can unilaterally impose the same path as in � (n; p) by proposing p

in state �� and imposing to stay at n in state �.So R must weakly prefer the path of � to the

equilibrium path of � (n; p) : Suppose now that in state ��; R refuses proposal p under status

quo n: Then R must weakly prefer staying at n in that state given continuation play � to

implementing p forever, so R must weakly prefer the path of � to the equilibrium path of

� (n; p) :

And �nally, if wR < �; then implementing p forever is the unique most preferred path of

both players, so this is the equilibrium path for � (n; p; q) and � (n; p) :

Part D: necessary part of Proposition 6 Part (iii). If all equilibria of � (n; p; q)
are Pareto superior to any equilibrium of � (n; p), then (6), (7), and (8) must
hold.
See the online appendix. We already know from Part B that (6) and (7) must be satis�ed.

The proof further shows that if (8) is violated, then there exists an equilibrium of � (n; p; q)

in which under status quo q; it is credible for L to propose and accept only p; thus forcing

R to propose p as well. Expecting this behavior under status quo q; R never proposes q and

n stays in place forever, which is not Pareto superior to all equilibria of � (n; p) :

Part E: su¢ ciency part of Proposition 6 Part (iii). If (6), (7), and (8) hold, any
equilibrium of � (n; p; q) or � (n; q) is strictly Pareto superior to any equilibrium
of � (n; p) :
Assume (6), (7), and (8) hold. From Part A, we already know that the strategy pro�le

�� (n; p; q) de�ned in Part A is an equilibrium that it is strictly Pareto better than any

equilibrium of � (n; p). So it su¢ ces to show that any equilibrium of � (n; p; q) and � (n; q)

must have the same path of play as �� (n; p; q). Throughout, � is an arbitrary equilibrium

of � (n; p; q) :

Step E1: Given continuation play �; in either state, L strictly prefers implementing p to

n or q; so given continuation play �; status quo p always stays in place.

See the proof of Step A1.

Step E2: Given continuation play �; in either state, R strictly prefers implementing n

to p.

Since � is an equilibrium, R weakly prefers implementing n and playing � thereafter to im-

plementing n forever. Moreover, (7) means that in any state, R strictly prefers implementing

n forever to p forever, which, from Step E1, is what happens if p is implemented and � is

played thereafter.
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Step E3: p is never implemented on the path of �.

From Step E1, p is never implemented under status quo n. So if Step E3 is false, it must

be that (i) in some state �0; p is implemented with positive probability under status quo q;

and that (ii) in some state �00; q is implemented with positive probability under the initial

status quo n: Since the �ow payo¤ of q relative to p is independent of �; (i) must be true

for all �0 2
�
�; ��
	
, so it must be true for �0 = �00. Therefore, (i) and (ii) imply that R must

strictly prefer implementing p to q and q to n in state �00; a contradiction with Step E2.

Step E4: Given continuation play �; in state �, both players strictly prefer to implement

n to q, so in state �, status quo n or q lead to n:

Suppose by contradiction that given continuation play �; some player i prefers implementing

q to n in state �. Since the �ow payo¤ of n relative to q is decreasing in �; i prefers

implementing q to n in all states, so i weakly prefers implementing q forever to implementing

n forever. But (7) means that in any state, R strictly prefers implementing n forever to p

forever, and thus to q forever. So i must be L: Simple algebra shows that (8) means that

L prefers implementing n forever to implementing q today and p forever after, so L must

prefer n forever to q forever, a contradiction. The second claim in Step E4 follows from the

�rst claim and Step E3.

Step E5: Given continuation play �; in state ��, both players strictly prefer to implement

q to n, so in state ��, status quo n or q lead to policy q:

From Step E4, in state �; status quo n and q lead to the same outcome. Moreover, in state ��;

from (6), both players get a strictly greater �ow payo¤ from q than from n: Therefore, given

continuation play �; both players strictly prefer implementing q to n: The second claim in

Step E5 follows from the �rst claim and Step E3.

Step E6: � has the same path as �� (n; p; q) :

This Step follows directly from Steps E3, E4, and E5.

Step E7: any equilibrium of � (n; q) has the same path as �� (n; p; q) :

This step follows directly from the proof of Step E4 and E5.

Proof of Propositions 3 and 5. Step 0: outline of the proof.

We �rst show that for the two-state process of Proposition 6, for any payo¤ parameters

(w; e), one can always choose �; �; ��; and � so that conditions (6), (7), and (8) are satis�ed

(Step 1). Under those conditions, we know from Proposition 6 part (iii) that in equilibrium,

both players strictly bene�t from the availability of q: We then add a small, i.i.d. payo¤

perturbation to the degenerate two-state process so as to guarantee that � (t) has full support,

as implicitly assumed in Propositions 3 and 5 (Step 2). By continuity, we show that when

the payo¤ perturbation is su¢ ciently small, in equilibrium, players still unanimously bene�t

from the availability of q as in the game with the two-state process, which proves Proposition
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5 (Step 3). To prove Proposition 3, note that a full support approximation of the two-state

process of Proposition 6 is compatible with the particular c.d.f. F assumed in Proposition

3 only if � = 0; that is, only in the case of a constant process. However, we show in Step

1 that for a nonnegligible sets of � and �, conditions (6), (7), and (8) can be satis�ed even

for � = 0. Under those conditions, from Proposition 6 part (iii), all equilibria of � (n; p; q)

must be IE, not in the sense that q is implemented on the equilibrium path with positive

probability as required by the de�nition, but in the weaker sense that conditional on some

(zero probability) realizations of the state, q is implemented. By continuity, that property

must be true for a small enough, full support perturbation of this constant process. The

equilibria of this perturbed game are IE in the usual sense (Step 4).

Step 1: For any payo¤ parameters (w; e) ; there exists �� 2 R; �� > 0; and some closed

intervals � � (0; 1) and � � R of positive length such that for all � 2 �; � 2 �, and
� 2 [0; ��], the conditions (6), (7), and (8) are satis�ed.
For any � 2 (wL;minfwL + eL; wRg) and �� > maxfwL + eL; wR + eRg; condition (6) is
satis�ed. Moreover, simple algebra shows that (7), and (8) can be rewritten as

� <
wR � (1� �) �� � ��

�
�
�� � �

� ; and � <
(1� �) eL + wL � �

�
�
�� � �

� ; (21)

respectively. The R.H.S. of the two inequalities above are strictly positive if and only if

�� � wR
�� � �

< � <
eL + wL � �

eL
: (22)

Note that for � = wL; the L.H.S. and R.H.S. of (22) are
���wR
���wL

2 (0; 1) and 1; respectively.
Therefore, if we �x �� > maxfwL + eL; wR + eRg, by continuity, there exists closed intervals
of positive length � � (0; 1) and � � (wL;minfwL + eL; wRg) such that for all � 2 �

and � 2 �, (22) is satis�ed. Since � and � are closed, by continuity, the R.H.S. of the

two inequalities in (21) is bounded below by some �� > 0 for all � 2 � and � 2 �; which
completes the proof of Step 1.

Step 2: De�nitions.

Let f� (t) : t � 0g denote the two-state process of Proposition 6 for some � 2 [0; 1] and some
� < ��. For any c.d.f. G with full support, let f" (t) : t � 0g be a sequence of i.i.d., real-valued
random variables with c.d.f. G; and for any d � 0; consider the i.i.d. process f� (d; t) : t � 0g
where � (d; t) � � (t) + d" (t). That is, � (d; t) is the sum of the degenerate random variable

� (t) and a full support perturbation " (t). For all X � fn; p; qg, let � (d;X) denote the game
� in which the set of available policies is X and the payo¤ state is given by f� (d; t) : t � 0g ;
and let � (d;X) be strategy pro�le of � (d;X).
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Note that for the unperturbed game � (0; X), one can view the realization of f" (t) : t � 0g
as a public signal that is payo¤ irrelevant. So for any d > 0, any behavioral strategy pro�le

� (d;X) of � (d;X) de�nes a (correlated) behavioral strategy pro�le of � (0; X) : In what

follows, we refer to this strategy pro�le as �0 (� (d;X)) :

Step 3 (Proof of Proposition 5): Using the notations of Step 1, there exists � 2 (0; 1) ;
�; �� 2 R, � 2 (0; 1) such that for d su¢ ciently small, both players strictly prefer any equilib-
rium of � (d; fn; p; qg) or � (d; fn; qg) to any equilibrium of � (d; fn; pg) :
Suppose Step 3 is false. Then for all � 2 (0; 1) ; �; �� 2 R, � 2 (0; 1), there exists a subse-
quence dk ! 0; and a corresponding subsequence of equilibria � (dk; fn; pg) ; � (dk; fn; qg),
and � (dk; fn; p; qg) such that for all k 2 N; some player weakly prefers � (dk; fn; qg) or
� (dk; fn; p; qg) to � (dk; fn; pg). From Step 1, we can pick �; �; ��, and � such that the

conditions (6), (7), and (8) hold. For these parameters, for any X � fn; p; qg ; consider the
corresponding sequence of (correlated) strategy pro�les �0 (� (dk; X)) of the game � (0; X) ;

as de�ned in Step 2. Since � (0; X) is a �nite Markov game, we can assume w.l.o.g. that

�0 (� (dk; X)) converges to some limit � (0; X). Since � (d; t) converges in distribution to

� (t) as d ! 0; the limit strategy � (0; X) must be a correlated equilibrium of � (0; X) :

Since players play sequentially in � (0; X), it is easy to check that the arguments made in

Steps A1 and E of the proof of Proposition 6 to characterize the unique equilibrium path

under conditions (6) and (8) are valid also if one allows for correlated strategy pro�les. So

the path of play of � (0; X) must be the unique (uncorrelated) equilibrium path of � (0; X).

By continuity, some player must weakly prefer the equilibrium path of � (0; fn; p; qg) to the
equilibrium path of � (0; fn; qg) or � (0; fn; p; qg). This contradicts Proposition 6 part (iii).
Step 4 (Proof of Proposition 3): Using the notations of Step 1, for � = 0, there exists

�d > 0 such that for all d 2
�
0; �d
�
; � 2 � and � 2 �, all equilibria of � (d; fn; p; qg) are IE :

To see why Step 4 proves Proposition 3, note that when � = 0; the distribution of � (d; t)

is � ! G
�
���
d

�
(which does not depend on ��), and from Step 1, � and � are of positive

measure.

Throughout this proof, we �x � = 0 and X = fn; p; qg so we omit X from the notations. In

what follows, we use results established in Step E of the proof Proposition 6. The careful

reader will notice that Proposition 6 assumes � > 0 , but that inequality is not required for

the proof of step E.20

Suppose Step 4 is false. Then there exists a subsequence dk ! 0 and a corresponding

subsequence of parameters �k 2 � and �k 2 �; such that for all k; there exists an EE � (dk)
20More precisely, � > 0 is needed in Step E of the proof of Proposition 6 only to guarantee that both players

strictly prefer �� (n; p; q) to any equilibrium of � (n; p) : But it is not needed to prove that all equilibrium of
� (n; p; q) have the same path as �� (n; p; q) ; which is what we use here.
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of � (dk) for these parameter values. Since � and � are closed and bounded, we can assume

w.l.o.g. that (�k; �k) tend to some limit (�; �) 2 � � �: Therefore, from Step 1, conditions

(6), (7), and (8) are satis�ed for �; �; and for some ��. Consider now the sequence of strategy

pro�les �0 (� (dk)) of the game � (0) ; as de�ned in Step 2. Since (6), (7), and (8) are satis�ed,

using the same argument as in Step 3, we can assume that the path of �0 (� (dk)) converges

to the unique (uncorrelated) equilibrium path � (0) for the parameters �; �; �� and � = 0.

Since � (dk) is an EE, q is implemented with probability 0 under status quo n: Since � (dk; t)

has full support, this means that for any realization of �; conditional on continuation play

� (dk), some player weakly prefers implementing n to q; or both weakly prefer implementing

p to q: By continuity, in some equilibrium of � (0) ; conditional on � (t) = ��, some player

must weakly prefer implementing n to q; or both weakly prefer implementing p to q: This

contradicts Step E of the proof Proposition 6 (see Steps E2 and E5).

8.3 Proofs for the Model of Section 5

Lemma 6 Consider the model of Section 5. For every stationary strategy pro�le �; let V �i
denote the continuation payo¤ for player i 2 fL;Rg of implementing policy x 2 fn; p; qg in
some period t 2 N with state (�t; vt) = (�; v) 2 R � [0; 1] until the state is redrawn, given
continuation play �. Then there exist (wL; wR; eL; eR) 2 R4 such that, for any equilibrium
strategy pro�le � and for all i 2 fL;Rg, � 2 R, and v 2 [0; 1] ;

V �i (�; v; p)� V �i (�; v; n) =
��(1�v)wi�vw�i

1��(1�v) ;

V �i (�; v; p)� V �i (�; v; q) =
(1�v)ei+ve�i
1��(1�v) .

(23)

Proof. We use the same notations as in Notation 1, with the exception that a state of
the world � 2 � now also includes the realization of the volatility v: For any strategy pro�le
�, for all � 2 � and s 2 fn; p; qg, let X� (�; s) denote the policy outcome in a period in

which the state of the world is �, the status quo is s; and players play �: By de�nition of

V �i ;

V �i (�; v; p)� V �i (�; v; n)

= � � wi + �
(

(1� v) (V � (�; v; p)� V � (�; v; n))+
v
R
�2� (V

� (�; v;X� (�; p))� V � (�; v;X� (�; n))) d� (v)

)

=
� � (1� v)wi � v

�
wi � �

R
�2� (V

� (�; v;X� (�; p))� V � (�; v;X� (�; n))) d� (v)
�

1� � (1� v) :
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Note that if we set w�i equal to the term inside the brackets on the numerator of the above

fraction, then w�i depends neither � nor on v; which proves the �rst line of (23). The proof

for the second line of (23) follows an analogous argument and is omitted for brevity.

Proof of Proposition 7. Let � be an equilibrium. For q to be implemented on the

equilibrium path, necessarily, some player i must weakly prefer implementing q to p in some

state (v; �) given continuation play �: From Lemma 6, we have V �i (�; v; q) � V �i (�; v; p) in
some state (v; �) 2 [0; 1) � R if and only if e�i < 0 and v > ei

ei�e�i
: So if e�i � 0 for both

players, for all (v; �) 2 [0; 1)�R; V �i (�; v; p) > V �i (�; v; q) ; and the �rst part of Proposition
7 holds trivially for �v = 1: Suppose now that e�i < 0 for some i: Then from Lemma 6, for

all v > ei
ei�e�i

and all � > maxi ((1� v) (wi + ei) + v (w�i + e�i )) ; q is i�s most preferred policy
given continuation play �; and j must accept q under status quo n; so q is implemented.

This means that Proposition 7 holds for �v = ei
ei�e�i

< 1: To prove the second part, it su¢ ces

to show that for some c.d.f. H; for all equilibria �, e�R < 0: The proof of that claim can be

found in the online appendix.
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Online Appendix to �Gridlock and Ine¢ cient Policy Instruments�

Example 1 Suppose that the support of F is concentrated on three states f�0; �1; �2g that
occur with the respective probabilities f�0; �1; �2g ; and suppose that the payo¤ parameters
are such that

�0 < wL < wL + eL < �1 < wR < wR + eR < �2: (24)

That is, in state �0; both players most prefer no intervention (n) and, in state �2, both

players prefer any intervention to n: In state �1, they disagree: L prefers any intervention

while R prefers no intervention. Suppose that agents can choose between six alternatives

fn; p; q; nS; pS; qSg ; where xS is policy x with a sunset. That is, if in a period with status
quo s 2 fn; p; qg a proposal xS is approved, then policy x is implemented for one period,
after which the status quo reverts to s for the next period. Suppose further, for the sake of

simplicity, that R has full proposal power in state �0; and L has full proposer power in states

f�1; �2g : We show that one can �nd a set of wL 2 (�1; �1) ; wR 2 (�1; �2) so that for eL and
eR su¢ ciently small, the following can be supported as an equilibrium.

� When the status quo is n, then n is proposed in states �0 and �1 and q is proposed in
state �2.

� When the status quo is q, then n is proposed in state �0 and pS is proposed in states
�1 and �2.

� When the status quo is p, then nS is proposed in state �0 and p is proposed in states
�1 and �2.

The intuition for the use of q in state �2 when the status quo is n is as follows. Status

quo p favors the more interventionist player L as it lets her defend the intervention when

she needs it. As a result, in �0, she may be at most willing to accept a temporary change

to n, that is, accept only nS. Since she prefers p to q, however, she may be less willing

to defend q in state �0; so under status quo q; R may be able to implement a change to n

without an attached sunset. Thus, implementing p results in p being the status quo forever,

whereas implementing q can still lead to status quo n. Since n is a better status quo for R in

states of disagreement, R is willing to propose q instead of p in state �2; as the equilibrium

requires.

Proof of Example 1. Let Wi (s) denote the value of the game for player i 2 fL;Rg
when the initial status quo is s 2 fn; p; qg and players play the proposed equilibrium, before
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knowing the realization of � (0). Then

Wi (n)�Wi (q) = �1 (wi � �1 + � (W (n)�W (q))) + �2 (�ei) ;
Wi (n)�Wi (p) = �0� (Wi (n)�Wi (p)) + �1 (wi � �1 + � (Wi (n)�Wi (p)))

+�2 (� (Wi (q)�Wi (p))� ei) ;
Wi (p)�Wi (q) = �0� (Wi (p)�Wi (n)) + (�1 + �2) (� (W (p)�W (q))) :

Rearranging terms, we obtain

Wi (n)�Wi (q) =
�1

1� �1�
(wi � �1)�

�2
1� �1�

ei; (25)

Wi (n)�Wi (p) =
(1� � (�2 + �1))
(1� �) (1� ��1)

(�1 (wi � �1)� �2ei) ;

Wi (p)�Wi (q) = � �0�

(1� �) (1� ��1)
(�1 (w � �1)� �2ei) :

Together with (24), the above equations imply that WL (n) � WL (q) < 0, and WL (p) �
WL (q) > 0; so L prefers status quo p to q to n . And for eR su¢ ciently small, WR (n) �
WR (q) > 0 andWR (p)�WR (q) < 0; so R prefers n to q to p as status quos. In what follows,

we show that if players expect these continuation value, it is subgame perfect for them to

play the proposed equilibrium.

Using (24) and (25), one can readily check that when s = p and � 2 f�1; �2g ; it is
optimal for L to unilaterally impose to stay at the status quo p: Likewise, when s = n and

� 2 f�0; �1g ; it is optimal for R to unilaterally impose to stay at the status quo n:
Consider now s = n and � = �2: For q to be implemented in such state, it must be that

R rejects L0s most preferred option p; which requires

wR � �2 + � (WR (n)�WR (p)) � 0: (26)

SinceR would always accept p with a sunset, it must be that L is weakly prefers implementing

q to implementing pS, which requires

�eL + � (WL (q)�WL (n)) � 0: (27)

Together with (24), (27) implies that L prefers implementing q to implementing n; and to

implementing qS: And �nally, R also must prefer implementing q to staying at the status
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quo n; which requires

�2 � (wR + eR) + � (WR (q)�WR (n)) � 0: (28)

Consider now s = q and � = �0: Alternative n is R�s best choice statically and as the

status quo, and n is indeed accepted if L prefers implementing n to staying at q; which

requires

wL + eL � �0 + � (WL (n)�WL (q)) � 0: (29)

Consider then s = q and � 2 f�1; �2g : Both players strictly prefer implementing pS to
staying at q: However, L prefers a permanent change to p; so for L to propose pS instead,

R must reject p; which means that she must prefer staying at q to implementing p: This

requires that for � 2 f�1; �2g ;

VR (�; q)� VR (�; p) = �eR + � (WR (q)�WR (p)) � 0;

which is true for eR small enough.

Finally, consider s = p and � = �0: L clearly accepts nS (as n is statically better and p

is her best status quo in �0), and R prefers implementing nS to qS. R0s �rst best would be

to implement n, so we have to make sure that L rejects that proposal, which requires

VL (�0; p)� VL (�0; n) = �0 � (wL + eL) + � (W (p)�W (n)) � 0: (30)

From (29) we see that L prefers n to q in �0; so she would also reject q:

Using (25) and isolating wR; conditions (26) and (28) become

wR � (1� �) (1� ��1) �2 + � (1� � (�2 + �1))�1�1
1� � + �2�1 (1� �1 � �2)

+
� (1� � (�2 + �1))�2

1� � + �2�1 (1� �1 � �2)
eR;

wR � (1� ��1) �2 + ��1�1 � eR (1� � (�2 + �1)) :

For eR = 0, these conditions become

�1 <
(1� �) (1� ��1) �2 + � (1� � (�2 + �1))�1�1

1� � + �2�1 (1� �1 � �2)
� wR � (1� ��1) �2 + ��1�1 < �2;

where the two outer inequalities follow from (24). Simple algebra shows that the second

term is strictly smaller than the fourth term, so one can �nd wR 2 (�1; �2) and eR small
enough so that (24), (26), and (28) are satis�ed.
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Using (25) and eL = 0, (29) becomes wL � �1; which from (24) holds strictly. So (29)

holds for eL su¢ ciently small.

Using again (25) and eL = 0, (27) and (30) become

�0 < (1� �1�) �0 + ��1�1 � wL �
(1� �) (1� ��1) �0 + � (1� � (�2 + �1))�1�1

1� � + �2�1 (1� �1 � �2)
< �1:

where the two outer inequalities follow from (24). Simple algebra shows that the second term

is strictly smaller than the fourth term, so one can �nd wL 2 (�0; �1) and eL small enough
so that (24), (27), and (30) are satis�ed, as needed.

The following lemma is a slight generalization of Lemmas 2 and 3 which will be useful

when proving Lemma 8 below.

Lemma 7 (Best Response) Let � and �� be two Markov strategy pro�les, and let V �;�
�

i (�; x)

denote the expected continuation payo¤ for player i 2 fL;Rg from implementing policy

x 2 fn; p; qg in period 0 conditional on � (0) = �; and on players playing � in period 1; and
playing �� from period 2 onwards. Then there exists a unique w�;�

�

i 2 R and e�;�
�

i 2 R such
that, for all � 2 R;

V �;�
�

i (�; p)� V �;�
�

i (�; n) = � � w�;�
�

i ; (31)

V �;�
�

i (�; p)� V �;�
�

i (�; q) = e�;�
�

i :

The parameters w�;�
�

i and e�;�
�

i depend on �� only through its continuation payo¤ parameters

w�
�
i and e�

�
i (as de�ned in Lemma 2), so we can write w�;�

�

i = W �
i

�
w�

�
i ; e

��
i

�
and e�;�

�

i =

E�i
�
w�

�
i ; e

��
i

�
. Moreover, for any (w�; e�) 2 R4,

( i ) w� = W � (w�; e�) and e� = E� (w�; e�) if and only if w� = w� and e� = e�; where w�

and e� are as de�ned in Lemma 2,

( ii ) if the actions prescribed by � are subgame perfect given continuation payo¤ parameters

(w�; e�), then for all i 2 fL;Rg ;

W �
i (w

�
i ; e

�
i ) = wi + �

Z
��(p;p)\��(n;n)

(w�i � � (�)) d� (�)� �
Z
��(p;p)\��(n;q)

e�i d� (�) ;

(32)

and

E�i (w
�
i ; e

�
i ) = ei + �

Z
��(p;p)\��(q;q)

e�i d� (�) + �

Z
��(p;p)\��(q;n)

(� (�)� w�i ) d� (�)(33)

+�

Z
��(p;n)\��(q;q)

(w�i + e
�
i � � (�)) d� (�) :
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Proof. Step 1: Proof of (31).
By de�nition, V �;�

�

i (�; p)�V �;�
�

i (�; n) is the sum of the �ow payo¤ gain from implementing

p instead of n in t = 0; which is ��wi; plus � times the continuation payo¤ gain from period
1 onwards from having s (1) = p instead of s (1) = n; given continuation play � in t = 1 and

�� in t � 2: Let V �
�
denote the continuation value function for the strategy pro�le �� as

de�ned in Lemma 2. Using Notation 1, the above reasoning implies that

V �;�
�

i (�; p)� V �;�
�

i (�; n)

= � � wi + �
X

x;y2fn;p;qg

�Z
��(p;x)\��(n;y)

�
V �

�

i (� (�) ; x)� V ��i (� (�) ; y)
�
d� (�)

�
:

Therefore, to prove the �rst line of (31), it su¢ ces to set

w�;�
�

i � wi � �
X

x;y2fn;p;qg

�Z
��(n;x)\��(p;y)

�
V �

�

i (� (�) ; x)� V ��i (� (�) ; y)
�
d� (�)

�
: (34)

An analogous reasoning on the continuation payo¤ gain from implementing p instead of q

implies that

e�;�
�

i = ei + �
X

x;y2fn;p;qg

�Z
��(p;x)\��(q;y)

�
V �

�

i (� (�) ; x)� V ��i (� (�) ; y)
�
d� (�)

�
: (35)

Step 2:
�
w�;�

�

i ; e�;�
�

i

�
depends on �� only via

�
w�

�
i ; e

��
i

�
; and W �

i

�
w�

�
i ; e

��
i

�
and E�i

�
w�

�
i ; e

��
i

�
are �-contractions in

�
w�

�
i ; e

��
i

�
.

For any x; y 2 X; the terms V �
�

i (� (�) ; x) � V �
�

i (� (�) ; y) on the R.H.S. of (34) and

(35) is equal to 0 when x = y; to �e��i when fx; yg = fp; qg ; to �
�
� (�)� w��i

�
when

fx; yg = fn; pg ; or to �
�
� (�)� w��i � e��i

�
when fx; yg = fn; qg ; which proves the �rst

claim of Step 1. Moreover, each of these terms is bounded by �
�
E (j�j) +

��w��i ��+ ��e��i ��� ;
and in (34) and (35), they are integrated over disjoint sets of states of the world, which

proves the second claim of Step 1.

Step 3: Proof of Part (i).

By de�nition of (w�; e�), if players expect continuation payo¤parameters (w�; e�) in period 2

and play � in period 1; then they expect continuation payo¤ (w�; e�) in period 0: By de�nition

ofW � and E�, this means that w� = W � (w�; e�) and e� = E� (w�; e�). Conversely, suppose

that (w�; e�) 2 R4 is such that w� = W � (w�; e�) and e� = E� (w�; e�) : Then (w�i ; e
�
i ) and

(w�; e�) are both �xed points of the mapping (!; ")! (W � (!; ") ; E� (!; ")) : From Step 2,

this mapping has a unique �xed point, so(w�i ; e
�
i ) = (w

�; e�) .
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Step 3: Proof of Part (ii) (32) and (33).

The proofs of Part (ii) follows the same logic as the proof of (12) and (13) in Lemma 3, and

are omitted for brevity.

Lemma 8 (Equilibrium Existence) There exists an equilibrium � such that w�L < w�R
and e�L > 0:

Proof. In this proof, we consider some arbitrary continuation payo¤parameters (w�; e�)
that satisfy the conditions of the lemma, construct a strategy pro�le � that is subgame

perfect given continuation payo¤ (w�; e�), show that the mapping (w�; e�)! (w�; e�) satis�es

the conditions of Brower�s theorem and that, to any �xed point of this mapping, there

corresponds an equilibrium with the desired properties.

Let � be such that e�L � 0 and w�L � w�R; and let � 2 [0; 1] be such that � = 0 if e�R < 0
and � = 1 if e�R > 0. As will be clear from what follows, � will be used as a tie-breaking rule

when player R is indi¤erent between implementing q and p; i.e., when e�R = 0. Below, we

construct a strategy pro�le � (�;w�; e�) which is subgame perfect given continuation payo¤

parameters (w�; e�) : This construction is quite intuitive, but we describe it in detail below

to show that � (�;w�; e�) can be chosen to be continuous in (�;w�; e�).

Veto-player�s strategy: In any Markov state in which the veto player i 2 fL;Rg has
the choice between n and p (q); � prescribes i to choose n when � � w�i (when � � w�i + e�i ),
and p (q) otherwise. When the veto player has to choose between p and q; � prescribes

L to always choose p; and R to choose p with probability � and q with probability 1 � �.
This behavior is clearly subgame perfect given continuation payo¤s (w�; e�) ; because, by

assumption, e�L � 0; � = 0 when e�R < 0 and � = 1 when e�R > 0: Finally, when the status
quo is proposed, the action prescribed by � is irrelevant so � prescribes both players to

accept the proposal.

Proposer�s strategy under status quo p: By assumption, e�L � 0; and by construc-
tion, � prescribes L always to reject proposal q: Therefore, proposal q is always weakly

dominated by proposal p irrespective of the identity of the proposer. So we can restrict

attention to proposals n or p.

When � � w�L; since w�L � w�R; both players prefer to implement n to p and, by construction
of �; proposal n is accepted by both players. So we set � to prescribe both players to propose

n.

When � > w�L; L strictly prefers to implement p to n and rejects proposal n: So we set � to

prescribe both players to propose p.

Proposer�s strategy under status quo n: Since w�R � w�L, one can easily check that
when � � min fmaxi (w�i + e�i ) ; w�Rg ; there is no alternative that is accepted by one player
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and that gives a strictly greater continuation payo¤ than n to the other player. Therefore,

we set � to prescribe both players to propose n.

When maxi (w�i + e
�
i ) < � � w�R (see Figure 2), � prescribes R to reject proposal p and

R prefers to implement n to p; so proposal p is weakly dominated by proposal n for both

players. Moreover, � prescribes both players to accept proposal q and both players strictly

prefer to implement q to n: Therefore, we set � to prescribe both players to propose q.

When w�R < � � maxi (w�i + e�i ) (see Figure 2), the same con�guration arises in which the
role of q and p reversed, so we set � to prescribe both players to propose p.

When � > max fmaxi (w�i + e�i ) ; w�Rg ; both players accept q and p: So it is subgame perfect
for proposer i 2 fL;Rg to propose the policy that gives her the greatest continuation payo¤,
which is p if e�i � 0 and q if e�i � 0. Therefore, we set � (�; �) to prescribe L to propose p
with probability 1, and R to propose p with probability � and q with probability 1� �:
L�s proposal strategy under status quo q: Given how we have set � in the Markov

states of the veto player R, the continuation payo¤ gain for L of proposing p instead of q is

�e�L; which is nonnegative. So one can restrict attention to strategies in which L only proposes

n or p: Note that the continuation payo¤gain for L of proposing p instead of n is �e�L when n

is not accepted by R (i.e., when � > w�R+e
�
R), and it is � (� � w�L)+(1� �) (� � w�L � e�L) =

� � w�L � �e�L when n is accepted by R (i.e., when � � w�R + e�R).
When � � min fw�L + �e�L; w�R + e�Rg ; from what precedes, n is accepted by R and L prefers

proposal n to p; so we set � to prescribe L to propose n.

When � > min fw�L + �e�L; w�R + e�Rg ; either � > w�R + e
�
R; in which case proposal n is not

accepted by R and thus yields outcome q, so L weakly prefers to propose p (since e�L � 0); or
w�L+�e

�
L < � � w�R+e�R; in which case R accepts n; but as argued above, since � > w�L+�e�L;

L is better o¤ proposing p than n; so we set � to prescribe L to propose p.

R�s proposal strategy under status quo q: By construction of �; when the status
quo is q proposals q and p are both accepted with probability 1 by L so, by de�nition of �;

proposing p with probability � and q with probability 1 � � always weakly dominates any
other proposal which mixes between q and p: In what follows, P � refers to the latter proposal

strategy. Thus, we can restrict attention to proposals n or P �: The continuation payo¤ gain

of proposing P � instead of n is � (� � w�R) + (1� �) (� � w�R � e�R) = � � w�R � �e�R when
proposal n is accepted by L (i.e., when � � w�L + e�L), and it is �e�R otherwise.
When � � min fw�R + �e�R; w�L + e�Lg ; L accepts proposal n so, from what precedes, R prefers
proposal P � to n; so we set � to prescribe R to propose n; which is subgame perfect.

When � > min fw�R + �e�R; w�L + e�Lg ; then either � > w�L + e�L; in which case proposal n is
not accepted by L, so R weakly prefers proposal P � because, by de�nition of �; �e�R � 0; or
w�R + �e

�
R < � � w�L + e�L; in which case proposal n is accepted by L but, as argued above,
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since w�R + �e
�
R < �; R prefers proposal P

� to proposal n: Thus, we set � to prescribe P �,

which is subgame perfect. This completes the de�nition of �:

Recall that � is such that w�L � w�R; e�L � 0 and � is such that � = 0 when e�R < 0 and
� = 1 when e�R > 0: By construction, � (�;w�; e�) is subgame perfect given continuation

payo¤ (w�; e�) : Therefore, if

(w�; e�) =
�
w�(�;w

� ;e�); e�(�;w
� ;e�)

�
;

then the �rst claim in Lemma 3 implies that � is an equilibrium. Using Lemma 7 Part (i),

the above condition is equivalent to

(�;w�; e�) =
�
�;W �(�;w� ;e�) (w�; e�) ; E�(�;w

� ;e�) (w�; e�)
�
: (36)

Thus, letting � (�;w�; e�) denote the R.H.S. of (36), to prove the lemma, it su¢ ces to show

that � has a �xed point (��; w�; e�) such that w�R � w�R; e�L � 0; �� = 0 if e�R < 0 and �� = 1
if e�R > 0. Hence, it is enough to show that � has a �xed point in D, where

D �
(
(��; w�; e�) 2 [0; 1]� [�B;B]4 : w�L � w�R; e�L � 0; �� =

(
0 if e�R < 0

1 if e�R > 0

)
;

and B � maxifjwij+jeij+E(j�j)g
1�� is a bound on continuation payo¤ parameters. Since D is a

compact space, Brower�s theorem implies the existence of a �xed point of � in D if � is

continuous and � (D) � D.
Let us �rst prove that � is continuous. One can easily see from the de�nition of � that

for all x; y 2 fn; p; qg and (��; w�; e�) 2 D; the probability that � (��; w�; e�) prescribes to
replace status quo x by y in state � is piece-wise constant in �: Moreover, on each of the

interval on which this probability is constant in �; it is continuous in (��; w�; e�). Finally,

the bounds of these intervals depend continuously on (��; w�; e�). Therefore, if we substitute

� = � (��; w�; e�) in (32) and (33), the continuity of F implies that the integrals on the

R.H.S. of these equations must be continuous in (��; w�; e�) ; which implies the continuity of

�:

To complete the proof, it remains to show that � (D) � D. To do so, the only non-

trivial condition to check is that if w�L � w�R and e
�
L � 0; then W �(��;w�;e�)

L (; w�; e�) �
W

�(��;w�;e�)
R (w�; e�) and E�(�

�;w�;e�)
R (w�; e�) � 0. In what follows, for notational convenience,

� (�;w�; e�) is denoted �: Since � is subgame perfect given continuation payo¤ parameters
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(w�; e�), Lemma 7 Part (ii) implies that

E�i (w
�; e�)� ei
�

=

Z
��(p;p)\��(q;q)

e�i d� (�) +

Z
��(p;p)\��(q;n)

(� (�)� w�i ) d� (�)

+

Z
��(p;n)\��(q;q)

(w�i + e
�
i � � (�)) d� (�) :

By construction of �; for all � 2 �� (p; n) ; � (�) � w�i ; so w�i + e�i � � (�) � e�i : Substituting
the latter inequality inside the last integral on the R.H.S. of the above equation, we obtain

E�i (w
�; e�)� ei
�

�
Z

(��(p;p)[��(p;n))\��(q;q)

e�i d� (�) +

Z
��(p;p)\��(q;n)

(� (�)� w�i ) d� (�) :

By construction of �, when � < w�L; status quo p is always replaced by n; so for all � 2
�� (p; p) ; � (�) � w�L: Therefore, the second integral on the R.H.S. of the above equation

must be weakly positive for i = L: By assumption, e�L � 0 implying the �rst integral is also
weakly positive; thus E�L (w

�; e�) � eL > 0:
Since � is subgame perfect given continuation payo¤ parameters (w�; e�), Lemma 7 Part

(ii) implies

W �
i (w

�; e�)� wi
�

=

Z
��(p;p)\��(n;n)

(w�i � � (�)) d� (�)�
Z

��(p;p)\��(n;q)

e�i d� (�) ;

so

W �
R (w

�; e�)�W �
L (w

�; e�)� (wR � wL)
�

=

Z
��(p;p)\��(n;n)

(w�R � w�L) d� (�)�
Z

��(p;p)\��(n;q)

(e�R � e�L) d� (�) :

If e�R � 0; then e�R � e�L: Substituting this inequality, w
�
L � w�R, and wL < wR; into the

above equation, we obtain W �
R (w

�; e�) > W �
L (w

�; e�) : If e�R > 0; then by construction of �,

�� (n; q) = ; so the above equation also implies that W �
R (w

�; e�) > W �
L (w

�; e�) :

Proof of Lemma 4 parts B and C. Part B: We construct the strategy pro�le �0 of
the lemma as the limit of a sequence of strategy pro�les

�
�k
�
k2N which we de�ne recursively

as follows.
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Step B1: construction of the sequence of strategy pro�les
�
�k
�
k2N such that for all k 2 N,

w�
k
= w�.

We set �0 = �: Suppose now that we have constructed �0; :::; �k for some k 2 N. Consider
�rst a Markov state in which the veto player moves. We set �k+1 to prescribe the same

actions as � if neither the status quo nor the proposal is q. When comparing p and q; we

set �k+1 to prescribe the veto player to vote in favor of p. Finally, when comparing n and q;

we set �k+1 to prescribe the veto player to vote in favor of q if and only if � (�) > w�i + e
�k

i .

Now consider the Markov states in which the proposer moves. We set �k+1 to prescribe the

same actions as � when the status quo is not q. When the status quo is q; �k+1 prescribes L

to propose n when � � w�L; and p when � > w�L; and �k+1 prescribes R to propose n when
� � min

n
w�L + e

�k

L ; w
�
R

o
and p when � > min

n
w�L + e

�k

L ; w
�
R

o
:

By construction, for all k 2 N; �k prescribes the same actions as � when neither the status
quo nor the proposal is q: Since � is an EE, this implies that q is never implemented on the

path of play of �k; and therefore that w�
k
= w�:

Step B2: statements of the properties satis�ed by
�
�k
�
k2N

In the following steps, we show by induction on k that for all k 2 N; �k satis�es the following
properties: (i) the actions prescribed by �k are subgame perfect given continuation play �k�1;

(ii) 0 < e�
k

L � e�k�1L , e�
k

R � e�k�1R � 0; and (iii) for all i 2 fL;Rg ;

e�
k

i = ei + �

Z min
n
w�L+e

�k�1
L ;w�R

o
w�L

bR (�; q) (� � w�i ) dF (�) : (37)

Note �rst that since �0 = �; from step A2 and A5, we have e�
0

L > 0 and e�
0

R � 0; so property
(ii) is satis�ed, which is the only condition we have to check for k = 0: In what follows, we

assume that for some k 2 N; for all all k0 = 1; :::; k; �k
0
satis�es properties (i) ; (ii) ; and

(iii) ; and prove that �k+1 satis�es the same properties.

Step B3: �k+1 satis�es property (i).

Consider �rst a Markov state in which the veto player moves and neither the status quo nor

the proposal is q. From Step B1, w�
k
= w�, so it is subgame perfect for the veto player to

play � (or equivalently �k+1) given continuation play �k.

Consider now a Markov state in which the veto player i 2 fL;Rg must choose between p
and q: By the induction hypothesis, e�

k

i � 0; so it is subgame perfect for i to vote for p;

given continuation play �k:

In the Markov states in which the veto player i must choose between n and q; it is subgame

perfect for i to vote for q if and only if � (�) > w�i + e
�k

i ; as prescribed by �
k+1:

Consider now a Markov state in which proposer i 2 fL;Rg moves and the status quo is
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not q: Since �k+1 coincides with � on such Markov states, and since � is an EE, the only

potentially pro�table deviations we need to rule out are deviations in which i proposes q.

Suppose by contradiction that this deviation is pro�table for i given continuation play �k:

From the induction hypothesis, e�
k

i � 0, so p gives a weakly greater continuation payo¤ than
q to i: Since q is a pro�table deviation, the outcome prescribed by �k cannot be p; so it

must be n, and i must strictly prefer implementing q to n. Since e�
k

i � 0, she must also

strictly prefer implementing p to n; and since p is not the outcome prescribed by �k, the

status quo must be n; and the veto player j must veto proposal p under status quo n: For

the deviation to be pro�table to i, j must also accept proposal q under status quo n: Since

e�
k

j � 0; this implies that j is indi¤erent between implementing n, p; and q; so � = w�j + e�
k

j :

By construction of �k; we have assumed that in such states of nature, j vetoes proposal q;

a contradiction.

Consider then the Markov states in which the status quo is q and proposer L moves. Since

e�
k

L � 0; for all � � w�L; we have � � w�L + e
�k

L so, given continuation play e�
k

L ; n is the

alternative that gives L the greatest continuation payo¤ and, since w�L < w�R; we have

� < w�R � w�R + e
�k

R ; by construction of �
k+1, therefore, R accepts proposal n: Hence, it is

subgame perfect for L to propose n when � � w�L; as prescribed by �k+1. When � > w�L; p
is the alternative that gives L the greatest continuation payo¤, and R accepts it. So it is

subgame perfect for L to propose p; as prescribed by �k+1:

Consider �nally the Markov states in which the status quo is q and proposer R moves.

When � � w�R; we have � � w�R+ e�
k

R so, given continuation play �k; n is the alternative that

gives R the greatest continuation payo¤and �k+1 prescribes L to accept proposal n: So when

� � min
n
w�L + e

�k

L ; w
�
R

o
; it is subgame perfect for R to propose n. When � > w�L+e

�k

L ; �
k+1

prescribes L to veto n; so n leads to outcome q; which gives R a weakly smaller continuation

payo¤ than proposing p: Therefore, it is subgame perfect for R to propose p: When � > w�R;

p is the alternative that gives the greatest continuation payo¤ to R and, since � > w�R > w
�
L;

�k+1 prescribes L to accept p, it is also subgame perfect for R to propose p. Thus, we have

shown that it is subgame perfect for R to propose n when � � min
n
w�L + e

�k

L ; w
�
R

o
; and p

when � > min
n
w�L + e

�k

L ; w
�
R

o
; as prescribed by �k+1:

Step B4: �k+1 satis�es property (iii).

By de�nition, e�
k+1

i is the relative gain in continuation payo¤ of implementing p instead of

q given continuation play e�
k

i : It is equal to ei plus � times the expected gain from having

status quo p instead of q in the next period. To compute the latter expected gain, note

that by construction of �k; when � < w�L; status quo q and p both lead to outcome n; when

� > w�R; status quo q and p both lead to outcome p; when � 2 (w�L; w�R) and L is the proposer,
status quo q and p both lead to outcome p; when � 2

�
min

n
w�L + e

�k

L ; w
�
R

o
; w�R

�
and R is
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the proposer, status quo q and p both lead to outcome p: Thus, in all the aforementioned

cases, the expected gain in continuation payo¤ from having status quo p instead of q is 0.

Modulo a zero measure states of nature, the only remaining case to consider is when R is the

proposer and � 2
�
w�L;min

n
w�L + e

�k

L ; w
�
R

o�
: In this case, status quo q leads to outcome n

while status quo p stays in place and the gain in continuation payo¤ from having status quo

p instead of q is � � w�ki = � � w�i ; which proves property (iii).
Step B5: �k+1 satis�es property (ii).

From Step B4 and the induction hypothesis, both �k and �k + 1 satisfy property (iii), so

e�
k+1

i � e�ki = ��
Z min

n
w�L+e

�k�1
L ;w�R

o
minfw�L+e�kL ;w�Rg

bR (�; q) (� � w�i ) dF (�) : (38)

From the induction hypothesis, �k satisfy property (ii) ; so

w�L � min
n
w�L + e

�k

L ; w
�
R

o
� min

n
w�L + e

�k�1

L ; w�R

o
� w�R:

The above inequalities imply that the right-hand side of (38) is negative for i = L and

positive for i = R; which proves that e�
k+1

L � e�
k

L and e�
k+1

R � e�
k

R . Finally, (37) implies

e�
k+1

L � eL > 0.
Step B6:

�
�k
�
k2N has a limit �

0 which satis�es the properties stated in part B) of the

lemma.

We have shown by induction that for all k 2 N; �k satis�es property (ii), so
�
e�

k

L

�
k2N

is

decreasing and bounded below. As such, it converges to some limit e1L : By construction, �
k+1

depends only and continuously on e�
k

L (see Step B1), so
�
�k
�
k2N converges as well to some

limit �0. Since for all k 2 N; �k satis�es property (i), by continuity, the actions prescribed by
�0 must be subgame perfect given continuation play �0: Taking the limit in (37), we obtain

that �0 satis�es (15), e�
0
L > 0 and e�

0
R � 0. By construction of

�
�k
�
k2N, �

0 never leads to

outcome q irrespective of the status quo, as needed.

Part C: In this part, we assume that there exists (w�; e�) 2 R4 which satis�es e�R � 0;
and the same conditions as w� and e�

0
in (14) and (15), and we construct an EE � such that

(w�; e�) = (w�; e�). Let � be a strategy pro�le which is subgame perfect when players expect

continuation payo¤ parameters (w�; e�) and such that, whenever a player i is indi¤erent

between q and p given continuation payo¤ (w�; e�) ; � prescribes i to break the indi¤erence

in favor of p. The strategy pro�le � (�;w�; e�) constructed in the proof of Lemma 8, with

parameters (�;w�; e�) = (1; w�; e�) satis�es these properties.

Since e� satis�es (15), we must have e�L � eL > 0: Together with the assumption that e�R � 0
and that � is subgame perfect given continuation payo¤s (w�; ��), this implies that q is never
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implemented on the path of play of �: Therefore, to complete the proof, it su¢ ces to show that

� is an equilibrium. From Lemma 3, it is equivalent to show that � is subgame perfect given

continuation payo¤s (w�; e�) : By construction of �, this is the case if (w�; e�) = (w�; e�), and

from Lemma 7 Part (i), this is the case if (w�; e�) = (W � (w�; e�) ; E� (w�; e�)). To complete

the proof, in Steps C1-C3 below, we show that the latter equation is satis�ed.

Step C1: w�L < w
�
R and w

� = W � (w�; e�) :

By construction of �; q is never implemented on the path of play of �, so �� (n; q) = ; and
� is subgame perfect given continuation payo¤s (w�; e�). Lemma 7 Part (ii) implies that

W �
i (w

�; e�) = wi + �

Z
��(p;p)\��(n;n)

(w�i � � (�)) d� (�) : (39)

By assumption, since w� satis�es (14). Taking di¤erences across players in (14) and solving

for w�R � w�L as in Step A1, we obtain that w�L < w�R: By construction, � is subgame perfect
given continuation payo¤s (w�; e�) so the same reasoning as in Step A3 implies that, modulo

a zero measure set, �� (p; p) = f� 2 � : � (�) > w�Lg and �� (n; n) = f� 2 � : � (�) < w�Rg :
Together with (39), this implies that

W �
i (w

�; e�) = wi + �

Z w�R

w�L

(w�i � �) dF (�) :

Since w� satis�es (14), the above equation implies that w�i = W
�
i (w

�
i ; e

�
i ), as needed.

Step C2: modulo a zero measure set of states of the world, �� (p; p)\�� (q; n) is the set
of � 2 � such that � (�) 2 (w�L;min fw�L + e�L; w�Rg) and R is the proposer.
Let � 2 �: Case 1: � (�) < w�L: From Step C1, � (�) < w�R; so both players get a strictly

greater continuation payo¤ from n than from p; which implies that � =2 �� (p; p) ; and thus
� =2 �� (p; p) \�� (q; n).
Case 2: � (�) > w�R: From Step C1, � (�) > w�L; so both players get a strictly greater

continuation payo¤ from p than from n; which implies that � =2 �� (q; n) ; and thus � =2
�� (p; p) \�� (q; n).
Case 3: � (�) 2 (w�L; w�R) and L is the proposer. In this case, since � (�) > w�L; L strictly

prefers to implement p to n and, since � prescribes L to behave as if L strictly prefers p to q;

L proposes p whenever it is accepted. By construction of �; R always accepts p under status

quo q; so � 2 �� (q; p), which implies that � =2 �� (q; n) and thus � =2 �� (p; p) \�� (q; n) :
Case 4: � (�) 2 (min fw�L + e�L; w�Rg ; w�R) and R is the proposer. In that case, � (�) > w�L+e�L;
so � prescribes L to reject n under status quo q; so � =2 �� (p; p) \�� (q; n) :
Case 5: � (�) 2 (w�L;min fw�L + e�L; w�Rg) and R is the proposer. As argued in Step C1,

� (�) > w�L implies that � 2 �� (p; p). Since � (�) < w�R; � (�) < w�R+ e�R; so R gets a greater
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continuation payo¤ from n than from p or q: Since � (�) < w�L+ e
�
L; � prescribes L to accept

proposal n under status quo q; so the only subgame perfect action for R is to propose n:

Therefore, � 2 �� (q; n) ; so � 2 �� (p; p) \�� (q; n) :
Since F is continuous, modulo a zero measure set, cases 1 to 5 above form a partition of �:

Step C2 follows then from the observation that � 2 �� (p; p) \�� (q; n) only in case 5.
Step C3: e� = E� (w�; e�) :

By construction of �; q is never implemented on the path of play of �, so �� (q; q) = ;,
and � is subgame perfect given continuation payo¤ parameters (w�; e�) : Using successively

Lemma 7 Part (ii), �� (q; q) = ; and Step C2, we obtain

E�i (w
�; e�) = ei + �

Z
��(p;p)\��(q;n)

(� (�)� w�i ) d� (�)

= ei + �

Z minfw�L+e�L;w�Rg

w�L

bR (�; q) (� � w�i ) dF (�) :

Since e�i satis�es (15), the above equation implies that e
�
i = E

�
i (w

�; e�).

Parts B and D of the proof of Proposition 6.
Part B: If there exists an equilibrium of � (n; p; q) of � (n; q) that is Pareto

superior to any equilibrium of � (n; p), then (6) and (7) must hold.
Let � (n; p; q) be an equilibrium of � (n; p; q) that is Pareto superior to any equilibrium of

� (n; p) (the argument for the case of an equilibrium of � (n; q) is analogous and is omitted

for brevity).

Step B1: wL < �.

Suppose by contradiction that wL � � and consider �rst the case wR � ��, that is, player

R gets a weakly greater �ow payo¤ from n than from p in either state. In that case, there

exists an equilibrium of � (n; p) in which R unilaterally impose to stay forever at the initial

status quo n. This equilibrium implements the most preferred policy path of R, and thus

cannot be dominated by any equilibrium of � (n; p; q).

Consider now the case wR < ��: In that case, � � wL < wR < ��; so both players get a

greater �ow payo¤ from p (n) than from n (p) in state �� (�). In that case, there exists an

equilibrium of � (n; p) in which players agree to implement n in state � and p in state ��.

This equilibrium path is optimal for both players and can thus not be dominated by any

equilibrium of � (n; p; q) :

Step B2: wR > �.

Suppose by contradiction that wR � �. Then both players get a weakly greater �ow payo¤
from p than from n in either state of nature. So there exists an equilibrium of � (n; p) in which

p is implemented in either state of nature irrespective of the status quo. This equilibrium
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path is optimal for both players and can thus not be dominated by any equilibrium of

� (n; p; q) :

Step B3: Given continuation play � (n; p; q) ; L strictly prefers implementing p to n or

q; so under status quo p; p stays in place forever.

Step B3 follows from the observation that since wL < �; L gets a strictly greater �ow payo¤

from p than from any other policy in either state of nature.

Step B4: Given continuation play � (n; p; q) ; R weakly prefers implementing q to p in

any state, and R strictly prefers implementing n to q and p in state �:

Observe �rst that q must be implemented on the equilibrium path, otherwise � (n; p) would

admit an equilibrium with the same path of play as � (n; p; q) : From Step B3, this implies that

q must be implemented with positive probability in some state �� 2
�
�; ��
	
under status quo

n: As argued in Step B3, given continuation play � (n; p; q) ; L strictly prefer implementing p

to q; so R must weakly prefer implementing q to p in state ��. Since the �ow payo¤di¤erence

between p and q and the distribution of future states is independent of �; this must be the

case in either state, which proves the �rst claim of Step B4.

Since q gives a strictly lower �ow payo¤ than p to R, the �rst claim of Step B4 implies that

R strictly prefers status quo q to status quo p. So it must be that in some state �0, with

positive probability, status quo q and p lead to di¤erent policies x and y; respectively, where

x 6= q; and such that R strictly prefers implementing x to y and q in state �0. Note that

x cannot be p because R could unilaterally impose p under status quo p: So x must be n:

This implies that in state �0, R strictly prefers implementing n to q: From what precedes,

this implies that R strictly prefers implementing n to p as well in that state. Since the �ow

payo¤ gain from n relative to p is decreasing in �, this is true for �0 = �:

Step B5: Given continuation play � (n; p; q) ; R strictly prefers implementing n to p in

any state, so under status quo n; p is never implemented.

Suppose Step B5 is false. Then since the �ow payo¤ gain from p relative to n is decreasing

in �, R must weakly prefer implementing p to n in state ��. Using Step B3, this means that

in state ��, R weakly prefers implementing p forever to n forever, since R can unilaterally

impose the latter policy path under status quo n: Since R gets a greater �ow payo¤ from n

than from p in state �, and since L gets a strictly greater �ow payo¤ from p than from n

in either state, this implies that there exists an equilibrium of � (n; p) in which the initial

status quo n stays in place as long as the state stays at �; and p is implemented at the �rst

occurrence of �� and stays in place forever after. Note that this equilibrium implements L�s

most preferred policy path from the �rst occurrence of state �� onwards. By assumption,

L is strictly better o¤ under � (n; p; q). For that to be the case, it must be that at the

initial status quo n and in state �; � (n; p; q) implements q or p with positive probability, a
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contradiction with Step B4.

Step B6: Under status quo n or q; p is never implemented.

Suppose Step B6 is false. From Step B5, this implies that p is implemented with positive

probability under status quo q: From Step B4, this means that given continuation play

� (n; p; q), R is indi¤erent between implementing q or p in any state. So from Steps B5, R

strictly prefers implementing n to p or q in any state, so R must weakly prefer staying at

n forever to playing � (n; p; q). Since she can unilaterally impose n forever in � (n; p) ; she

must weakly prefer any equilibrium of � (n; p) to � (n; p; q) ; a contradiction.

Step B7: Given continuation play � (n; p; q) ; both players strictly prefer implementing q

to n in state ��.

Suppose Step B7 is false. given the �ow payo¤ speci�cation, this means that some player

weakly prefers implementing n to q in any state. From Step B6, this implies that that player

must weakly prefer staying at n forever to playing � (n; p; q). Since she can unilaterally

impose n forever in � (n; p) ; she must weakly prefer any equilibrium of � (n; p) to � (n; p; q) ;

a contradiction.

Step B8: With probability 1; status quo n stays in place in state � and is replaced by q

in state ��.

That n stays in place in state � follows immediately from Step B4. That it is replaced by q

with probability 1 follows from Steps B5 and B7.

Step B9: Status quo q stays in place with probability 1 in state ��; in state �, it is replaced

with positive probability by n and stays in place with the remaining probability.

That q stays in place with probability 1 in state �� follows from Steps B5 and B7. Suppose

now that status quo q is never replaced by n in state �: From Step B6, this implies that q

must stay in place with probability 1: But then both players strictly prefer implementing p

forever, a contradiction.

Step B10: Condition (6) must be satis�ed.

Step B1 shows that the �rst inequality of (6) holds. For the path of play described by

Steps B8 and B9 to be an equilibrium, both players must get a weakly greater (smaller)

�ow payo¤ from n than from q in state � (��). This means that the last three inequalities in

(6) must hold weakly. Suppose by contradiction that the last inequality holds with equality.

Then one player must be indi¤erent between staying at n forever and the equilibrium path.

Since she can unilaterally impose n forever in the game � (n; p) ; she must weakly prefer any

equilibrium of � (n; p) to � (n; p; q) ; a contradiction.

Step B11: Condition (7) must be satis�ed.

Consider the strategy pro�le � (n; p) of � (n; p) de�ned as follows: L always proposes p and

accepts only p, and R proposes n (p) and accepts only n (p) in state � (��). The path of play

60



of � (n; p) is such that n stays in place until the �rst occurrence of state ��; at which time n

is replaced by p and p stays in place forever. Since the path of play of � (n; p) implements n

until the �rst occurrence of state �� and never implements p, L must strictly prefers � (n; p)

to � (n; p; q) ; so by assumption, � (n; p) cannot be an equilibrium of � (n; p). Using the same

argument as in the proof of Step B3, given continuation play � (n; p) ; the actions prescribed

by � (n; p) to L are subgame perfect. The actions prescribed by � (n; p) to L under status

quo p are also subgame perfect since R is not pivotal under that status quo. From Step B2,

R gets a greater �ow payo¤ from n than from p in state �, so in that state, it is subgame

perfect for R not to propose p and to veto p under status quo n: Since � (n; p) is not an

equilibrium, it must be that the actions prescribed by � (n; p) to R under status quo n and in

state �� are not subgame perfect. This means that in state ��, L must strictly prefer staying at

n forever than switching to p forever. Simple algebra shows that this condition is equivalent

to (7).

Part D: If all equilibria of � (n; p; q) are Pareto superior to any equilibrium of
� (n; p), then (6), (7), and (8) must hold.
We already know from Part B that (6) and (7) must be satis�ed. So to prove Part D, it

su¢ ces to prove (8). To do so, we consider the following strategy pro�le �0 (n; p; q) . Under

status quo p; both players propose p; L accepts only p, and R vetoes only q. Under status quo

n; both players proposes n; R accepts only n; and L vetoes only q. Under status quo q; both

players proposes p, L accepts only p; whereas R accepts any policy. By construction, the

path of play of �0 (n; p; q) implements n forever. Since either player can unilaterally impose

that outcome in the game � (n; p) ; �0 (n; p; q) is not Pareto superior to any equilibrium of

� (n; p) ; so it cannot be an equilibrium. In what follows, we characterize players incentives

given continuation play �0 (n; p; q) (Step D1) and show that if condition (8) is violated,

�0 (n; p; q) is an equilibrium (Step D2), so (8) must be satis�ed.

Step D1: If condition (8) is violated, then given continuation play �0 (n; p; q) ; in any

state, R prefers implementing n to p to q; whereas L prefers implementing p to n or q.

Note �rst that since status quo q and p both lead to policy p, and since p gives both

players a greater �ow payo¤ than q; both players prefer implementing p to q in any state.

Moreover, (7) hold, and this condition means that in either state, R prefers implementing n

forever to p forever, which is what happens if n and p are implemented, respectively, given

continuation play �0 (n; p; q). Therefore, R prefers implementing n to p to q: To prove that

L prefers implementing p to n to q; it su¢ ces to show that L prefers implementing n to q, or

equivalently, that L prefers implementing n forever to implementing q today and p forever

after. Simple algebra shows that this is the case if and only if condition (8) is violated.
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Step D2: If condition (8) is violated, �0 (n; p; q) is an equilibrium.

It is straightforward to check that under any status quo, the actions prescribed by �0 (n; p; q)

to either veto-player are consistent with the preferences characterized in Step D2, so they

are subgame perfect given continuation play �0 (n; p; q). Given the actions prescribed to the

veto-players, one can readily check that under any status quo, �0 (n; p; q) prescribes either

proposer to proposes her most preferred policy among those accepted by the veto-player, so

they are also subgame perfect given continuation play �0 (n; p; q).

The following proposition proves the claim made in the text right after Proposition 3.

Proposition 8 Let G be the c.d.f. of the normal distribution. For any (wL; wR; eL; eR) ; for
any " > 0, there exists � 2 (0; 1) ; d > 0 and � 2 R such that for the c.d.f. F (�) � G

�
���
d

�
;

for any equilibrium of �; conditional on some intervention being implemented under status

quo n, the probability (evaluated before the realization of � (t)) that p is implemented is

smaller than ":

Proof. Throughout that proof, we use the same notations as in the proof of Proposition
3. From Step 1 of that proof, if we �x � = 0; we can pick � 2 (0; 1) ; and � < �� such

that conditions (6), (7), and (8) are satis�ed. Using the same notations as in Step 3 of that

proof, consider a sequence d! 0 , a corresponding sequence of equilibria � (d) of � (d), and

the corresponding sequence of strategy pro�les �0 (� (dk)) of the game � (0) ; as de�ned in

Step 2. As argued in Step 3, we can assume that �0 (� (dk)) converges to an (uncorrelated)

equilibrium � (0) of � (0) :

For all d > 0 along that sequence, consider the cuto¤ states w�(d)i and w�(d)i + e
�(d)
i above

which each player i prefers implementing p and q; respectively, to n, given continuation play

� (d) in the game � (d) : Since the path of play of � (d) converges to the unique equilibrium

path of � (0), by continuity, these cuto¤ states must converge to w�(0)i and w�(0)i + e
�(0)
i : As

argued in Step E of the proof of Proposition 6, the unique equilibrium path of � (0) is such

that status quo s 2 fn; qg leads to policy n and q in state � and ��; respectively. This implies
that for both players,

� < w
�(0)
i + e

�(0)
i = wi + ei < ��:

Moreover, it should be clear from Steps E1 and E2 of the proof of Proposition 6 that w�(0)R >
�� > w

�(0)
L : Therefore,

� < max
i

�
w
�(0)
i + e

�(0)
i

�
= max

i
(wi + ei) < �� < max

i

�
w
�(0)
i

�
: (40)

So for d su¢ ciently small, maxi
�
w
�(d)
i + e

�(d)
i

�
< maxi

�
w
�(d)
i

�
. As explained in Section

4.1, this implies that under status quo n; n stays in place if � < maxi
�
w
�(d)
i + e

�(d)
i

�
, q is
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implemented when � 2
�
maxi

�
w
�(d)
i + e

�(d)
i

�
;maxi

�
w
�(d)
i

��
and p or q is implemented in

states � > maxi
�
w
�(d)
i

�
; depending on who is the proposer. Therefore, under status quo n;

conditional on some intervention being implemented, the probability that p is implemented

is bounded above below by

�(d) =

1�G
�
maxi

�
w
�(d)
i

�
��

d

�
1�G

�
maxi

�
w
�(d)
i +e

�(d)
i

�
��

d

� :

From (40),
maxi

�
w
�(d)
i +e

�(d)
i

�
��

d
!d!0 1 and

maxi

�
w
�(d)
i

�
��

d
�

maxi

�
w
�(d)
i +e

�(d)
i

�
��

d
!d!0 1: One

can easily show that in the case of the normal distribution (as for many other standard

distributions), for any two sequences (an)n2N and (bn)n2N that tend to in�nity,
1�G(an+bn)
1�G(an) ! 0

as n!1, so �(d)! 0 as d! 0; as needed.

The next lemma will be useful for the proof of Proposition 4 Part (iii) below.

Lemma 9 If � is an equilibrium, then

e�i = ei + �

�Z
��(q;q)

e�i d� (�) +

Z
��(p;p)\��(q;n)

(� (�)� w�i ) d� (�)
�
; (41)

w�i = wi + �

�Z
��(p;p)\��(n;n)

(w�i � � (�)) d� (�)�
Z
��(n;q)

e�i d� (�)

�
: (42)

and

w�R � w�L =
(1���(��(q;q)))[wR�wL]���(��(n;q))[eR�eL]

D
;

e�R � e�L =
(1���(��(p;p)\��(n;n)))[eR�eL]���(��(p;p)\��(q;n))[wR�wL]

D
;

w�R + e
�
R � w�L � e�L =

(1���(��(p;p)\��(q;fn;qg)))[wR�wL]+(1���(��(p;p)\f��(n;n)[��(n;q)g))[eR�eL]
D

:

(43)

for some D such that (1� �)2 � D � 1:

Proof. Step 1: for any equilibrium �; �� (q; q) � �� (p; p) ; �� (n; q) � �� (p; p) ; (42),
and (41).

That �� (q; q) � �� (p; p) follows from Lemma 4 Part A and Lemma 5. To show that

�� (n; q) � �� (p; p) ; let � 2 �� (n; q) : In state � (�) both players must weakly prefer

implementing q to n, so � (�) � maxi2fL;Rg fw�i + e�i g : From Lemma 4 Part A and Lemma

5,

max
i2fL;Rg

fw�i + e�i g � min
i2fL;Rg

fw�i + e�i g > min
i2fL;Rg

fw�i g ;
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so � (�) > mini2fL;Rg fw�i g ; which means that one player strictly prefers implementing p to
n; and therefore � =2 �� (p; n) : Since �� (p; q) = ;; and since (�� (p; x))x2fn;p;qg is a partition
of �; necessarily, � 2 �� (p; p) ; as needed.
Substituting �� (n; q) � �� (p; p) into (12), we obtain (42). Finally, since �� (p; n) \
�� (p; p) = ;; �� (q; q) � �� (p; p) implies �� (p; n) \ �� (q; q) = ;: Substituting the lat-
ter equality and �� (q; q) � �� (p; p) into (13), we obtain (41).
Step 2: Proof of the �rst two lines of (43).

Subtracting (42) for i = R from (42) for i = L; and doing the same for (41), we get(
w�R � w�L = wR � wL + �� (�� (p; p) \�� (n; n)) (w�R � w�L)� �� (�� (n; q)) (e�R � e�L)
e�R � e�L = eR � eL + �� (�� (q; q)) (e�R � e�L)� �� (�� (p; p) \�� (q; n)) (w�R � w�L)

:

The above equations can be viewed as a linear system in w�R�w�L and e�L�e�R: Straightforward
algebra shows that its solution is given by the �rst two lines of (43) for

D � (1� �� (�� (p; p) \�� (n; n))) (1� �� (�� (q; q)))��2� (�� (p; p) \�� (q; n))� (�� (n; q)) :

Step 3: Proof of the third line of (43).

From Step 1, �� (q; q) � �� (p; p) and, by de�nition of��; �� (q; n) and�� (q; q) are disjoint.
Thus,

� (�� (p; p) \�� (q; n)) + � (�� (q; q)) = � (�� (p; p) \ f�� (q; n) [�� (q; q)g) : (44)

From Step 1, �� (n; q) � �� (p; p) and, by de�nition of ��; �� (n; n) and �� (n; q) are

disjoint, so

� (�� (p; p) \�� (n; n)) + � (�� (n; q)) = � (�� (p; p) \ f�� (n; n) [�� (n; q)g) : (45)

Adding up the �rst two lines of (43) and substituting (44) and (45) into the corresponding

expression for w�R + e
�
R � w�L � e�L, we obtain the third line of (43) for the above D.

Step 4: (1� �)2 � D � 1:
ThatD � 1 is obvious from the de�nition ofD: Let us now proveD � (1� �)2 : Observe that
�� (q; q) and �� (p; p) \ �� (q; n) are disjoint. So �� (q; q) is included into the complement
of �� (p; p)\�� (q; n) : Likewise, �� (p; p)\�� (n; n) and �� (n; q) are disjoint, so �� (p; p)\
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�� (n; n) is included in the complement of �� (n; q) : Therefore,

D = (1� �� (�� (p; p) \�� (n; n))) (1� �� (�� (q; q)))
��2� (�� (p; p) \�� (q; n))� (�� (n; q))

� (1� � (1� � (�� (n; q)))) (1� � (1� � (�� (p; p) \�� (q; n))))
��2� (�� (p; p) \�� (q; n))� (�� (n; q))

= (1� �) (1� � + � (� (�� (n; q)) + � (�� (p; p) \�� (q; n))))
� (1� �)2 :

Proof of Proposition 4 Part (iii) case wR � wL ! +1:.
Suppose by contradiction that Part (iii) is false in the case wR�wL ! +1. Then there

exists e 2 (0;+1)2, m 2 R and two sequences
�
wk
�
k2N and (� (k))k2N with the following

properties: wkR � wkL ! +1, for all k 2 N; wkL + wkR = m; and � (k) is an IE for the �ow
payo¤parameters

�
e; wk

�
. Since wkR�wkL ! +1; Equation (43) and inequalityD � (1� �)2

in Lemma 9 imply that, for k su¢ ciently large,

w
�(k)
R � w�(k)L � (1� �)

�
wkR � wkL

�
� jeR � eLj :

Hence, w�(k)R �w�(k)L ! +1 and, therefore, w�(k)R > w
�(k)
L for k su¢ ciently large. Since � (k)

is an IE, the latter inequality, together with Lemma 5, implies that, for k su¢ ciently large,

e
�(k)
L > 0 � e�(k)R : By the same token, Lemma 9 implies that for k su¢ ciently large,

w
�(k)
R + e

�(k)
R � w�(k)L � e�(k)L � (1� �)

�
wkR � wkL

�
� jeR � eLj :

Hence, w�(k)R + e
�(k)
R �w�(k)L � e�(k)L ! +1: Together with e�(k)L > 0 � e�(k)R , this implies that

for k su¢ ciently large,

w
�(k)
L < w

�(k)
L + e

�(k)
L < w

�(k)
R + e

�(k)
R � w�(k)R : (46)

Let � 2 ��(k) (p; p)\��(k) (q; n) : Since � (k) is an equilibrium, in state �; both players must
weakly prefer to implement n to q and one player must prefer to implement p to n: Thus,

mini2fL;Rgw
�(k)
i � � (�) � mini2fL;Rg

�
w
�(k)
i + e

�(k)
i

�
and (46) implies

��(k) (p; p) \��(k) (q; n) �
n
� 2 � : w�(k)L � � (�) � w�(k)L + e

�(k)
L

o
: (47)
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From (47), for all � 2 ��(k) (p; p) \ ��(k) (q; n) ; � (�) � w�(k)L � e
�(k)
L : Substituting this

inequality into (41), we obtain

e
�(k)
L � eL + ��

�
��(k) (q; q)

�
e
�(k)
L + ��

�
��(k) (p; p) \��(k) (q; n)

�
e
�(k)
L

and therefore that e�(k)L � eL= (1� �). Since e�(k)L > 0; the latter inequality implies that e�(k)L

is bounded. From (46) and (47), for all � 2 ��(k) (p; p) \ ��(k) (q; n) ; 0 � � (�) � w�(k)R �
w
�(k)
L � w�(k)R : The preceding inequality and (47) imply thatZ

��(p;p)\��(q;n)
(� (�)� w�R) d� (�) �

Z
��(p;p)\��(q;n)

�
w
�(k)
L � w�(k)R

�
d� (�)

�
Z w

�(k)
L +e

�(k)
L

w
�(k)
L

�
w
�(k)
L � w�(k)R

�
dF (�) :

Substituting the above inequality into (41), we obtain

e
�(k)
R � eR + ��

�
��(k) (q; q)

�
e
�(k)
R (48)

+�

Z w
�(k)
L +e

�(k)
L

w
�(k)
L

w
�(k)
L dF (�)� �

Z w
�(k)
L +e

�(k)
L

w
�(k)
L

w
�(k)
R dF (�) :

Since e�(k)L is bounded and w�(k)L ! �1 as k ! 1, the integrability of F implies that the
term

R w�(k)L +e
�(k)
L

w
�(k)
L

w
�(k)
L dF (�) in (48) tends to 0. If we can show that w�(k)R �

���w�(k)L

��� then, by
the same token,

R w�(k)L +e
�(k)
L

w
�(k)
L

w
�(k)
R dF (�) tends to 0 and so (48) implies that, for k su¢ ciently

large, e�(k)R > 0: This last inequality, together with e�(k)L > 0 and the assumption that � (k)

is an IE, yields the desired contradiction. To complete the proof of Step 5, it su¢ ces to show

that w�(k)R �
���w�(k)L

��� :
Summing (41) and (42) across players and collecting the terms in factor of w�(k)L +w

�(k)
R and

e
�(k)
L + e

�(k)
R , we obtain: 
1� ��

�
��(k) (p; p) \��(k) (n; n)

�
��
�
��(k) (n; q)

�
��
�
��(k) (p; p) \��(k) (q; n)

�
1� ��

�
��(k) (q; q)

� ! w
�(k)
L + w

�(k)
R

e
�(k)
L + e

�(k)
R

!

=

 
m� �

R
��(k)(p;p)\��(k)(n;n) � (�) d� (�)

eL + eR +
R
��(k)(p;p)\��(k)(q;n) � (�) d� (�)

!
:

From Lemma 9, the determinant of that system, which is D; is bounded away from 0 as

k ! 1. Moreover, all the coe¢ cients of the above system are bounded. Therefore, the

solution w�(k)L + w
�(k)
R must be bounded as k ! 1. Since w�(k)L ! �1; this implies that
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w
�(k)
R �

���w�(k)L

��� ; as needed.
Proof of the second claim of Proposition 7. Consider a sequence of c.d.f. (Hk)k2N

such that, for all k 2 N; Hk (v; �) = Gk (v)F (�) ; where Gk has full support and tends to

the degenerate distribution which puts probability 1 on v = 1 as k !1: For all k 2 N; let
� (k) be an equilibrium for the c.d.f.Hk: Suppose the second claim of Proposition 7 is false.

Then for some � arbitrarily close to 1; one can choose � (k) such that e�(k)L � 0 and e�(k)R � 0.
Since w, e and � are �xed, w�(k) and e�(k) are bounded, we can extract a subsequence

such that w�(k) and e�(k) converge. Since e�(k)L � 0 and e�(k)R � 0; one can easily check

from (23) that for all v < 1; for almost all �; for any two distinct policies x; y 2 fn; p; qg ;
V
�(k)
i (�; v; x) 6= V �(k)i (�; v; y) ; that is, players are not indi¤erent between implementing any

two policies. Thus, for all v < 1; each player has a unique and pure subgame perfect action

at any Markov states for almost all �. If e�(k)i = 0 for some player i; then for v = 1; player i

is indi¤erent between implementing p and q for all � 2 R: But we can assume w.l.o.g. that
in this case, � (k) prescribes i to behave as if she strictly prefers implementing p to q: Since

Gk puts probability 0 on v = 1; this deviation from � (k) does not a¤ect the continuation

payo¤ parameters w�(k) and e�(k); and it is therefore still an equilibrium.

Given this restriction on � (k), for all v 2 [0; 1] ; the parameters w�(k) and e�(k) uniquely
pin down the equilibrium behavior prescribed by � (k) for almost all � 2 [0; 1] : Moreover,
they do so in a continuous way in the sense that, for all v 2 [0; 1] ; the set of realizations of �
for which a given action is prescribed to the veto player or the proposer depend continuously

on w�(k) and e�(k) (for instance, veto player i must veto proposal p under status quo n when

� < (1� v)wi+vw�(k)i and accept it when the reverse inequality holds). Since w�(k) and e�(k)

converge, this implies that for all v 2 [0; 1] ; � (k) converge as k ! 1 and, by continuity,

this limit must be an equilibrium for the game with the limit distribution H1 (v; �) ; which

puts probability 1 on v = 1: This game is equivalent to the game considered in Proposition

3. Since � can be chosen arbitrarily close to 1; and since F can be chosen arbitrarily, we

obtain a contradiction with Proposition 3.
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