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Abstract

In many dynamic matching markets, priorities depend on previous allocations. In such envi-

ronments, agents on the proposing side can manipulate the period-by-period deferred acceptance

(DA) mechanism. We show that the fraction of agents with incentives to manipulate the DA

mechanism approaches zero as the market size increases. In addition, we provide a novel al-

gorithm to calculate the percentage of markets that can be manipulated. Based on randomly

generated data, we find that the DA becomes approximately non-manipulable when the schools

capacity reaches 20. Our theoretical and simulation results together justify the implementation

of the period-by-period DA mechanism in dynamic markets.
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1 Introduction

The field of market design has had a great deal of success in helping to redesign assignment markets.

The well-known problem of allocating students to public schools illustrates well the importance of

the field in practical applications (Abdulkadiroğlu and Sönmez, 2003; Abdulkadiroğlu et al., 2009,
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2005).1 Economists helped organize centralized student-school matching clearinghouses in New

York and Boston, which match more than 100,000 students to schools every year.2

The deferred acceptance (DA) mechanism proposed by Gale and Shapley (1962) has played a

prominent role in the school choice problem — the (static) problem most closely related to ours.

For instance, both Boston and New York adopted the DA mechanism to allocate students to public

schools. The primary theoretical justification for this is that the DA results in the student optimal

stable matching which is a very desirable property.3 Another key theoretical justification for the

prominent role of DA in practice is that the students have no strategic incentives to manipulate the

DA mechanism. Consequently, the DA mechanism implements the student optimal stable matching

in dominant strategies.

In this paper we study the DA mechanism in dynamic markets. Many important assignment

markets are inherently dynamic, as some agents repeatedly participate in the assignment process.

In practice, even the school choice problem has dynamic features: families with multiple children

participate in the assignment of schools several times.4 Even in systems that do not grant siblings

priority, there is considerable mobility of students across schools. Schwartz et al. (2009) report

that students in New York primary schools move within a single year and across years. Further,

the U.S. General Accounting Office reports that “nearly all students change schools at some point

before reaching high school.”5 This suggests that there is a significant number of students who are

reassigned to schools after the initial assignment, which is handled through the DA mechanism.

If one considers the subsequent assignments, then the school choice problem can be viewed as a

dynamic matching problem.

In addition to the school choice problem, there are other important assignment markets that are

dynamic. Examples include the problem of allocating children to public day care centers, in which

the same child is assigned to day care centers in consequent periods;6 the centralized assignment of

teachers to public schools, where the same teacher can participate in the allocation process several

times during her teaching career;7 and on-campus housing assignments, in which the same student

participates multiple times.8

One important feature that is present in many dynamic markets is that the priorities of one or

more sides of the market is history-dependent. For example, in both the day care assignment and

the teacher assignment problems a child or teacher cannot be involuntarily displaced at a school to

which she is currently assigned. The same is true for the on-campus housing assignment problems.

1Other important applications of market design in practice include, for example, the assignment of doctors to
hospitals (Roth, 1984; Roth and Peranson, 1999) and the organ exchange programs (Roth et al., 2004, 2005, 2007).

2Recently, Denver and New Orleans have started similar programs.
3Stability in the school choice setting is a notion of fairness (or elimination of justified envy) (Balinski and Snmez,

1999): if any student finds another school superior to her match under a stable matching then more deserving students
must have taken all the available seats at the superior school.

4See Dur (2011) for detailed information.
5U.S. General Accounting Office (2010).
6See Kennes et al. (2014) for detailed information on the current Danish daycare system.
7See Pereyra (2013) for detailed information.
8See Kurino (2014) for detailed information.
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Another such example occurs in the Boston school system, where children enrolled in preschools

have a higher priority over other children in that same school. In markets in which the priorities

of one side depend on previous allocations, there might be opportunities for manipulations that do

not exist in static matching problems.

Given the wide use of the period-by-period DA mechanism, it is natural to ask whether the

theoretical justifications of the DA in static settings carry on to dynamic markets. As we discussed

earlier, the first justification is stability; Pereyra (2013), Kennes et al. (2014) and Dur (2011)

show that under rather weak restrictions on the agents’ preferences, the period-by-period deferred

acceptance mechanism produces a stable matching. Thus, if the policy makers’ goal is to achieve a

“fair” allocation, then the use of the DA in dynamic markets is justified. Importantly, though, it

turns out that the DA mechanism is manipulable.9 The primary reason for this negative result is

that history-dependence creates opportunities for manipulations that are absent in static problems.

For example, an agent might misreport her preferences in order to affect the priority ranking and

get a better allocation in the future.10,11

The results from the dynamic matching literature thus naturally lead us to the main question of

this paper: How problematic are the incentives for strategic manipulations of the period-by-period

DA mechanism in dynamic markets? We tackle this question through theoretical results and

computer simulations. Our benchmark model is a dynamic version of the school choice problem in

which successive cohorts of finitely many students, each of them living for two periods, are matched

every period to finitely many schools. First, we prove that the incentives for manipulating the DA

mechanism in dynamic matching problems vanish as the market size increases. The growth of

the market we consider here is the same one considered in Azevedo and Leshno (2013): the set

of agents along with the capacities of the schools (not the set of schools) increases. Under this

growth dynamic we identify the conditions for the implementation of the DA mechanism as the

number of participants increases. We show that if each schools’ priorities over agents depend on the

previous history only through previously enrolled agents – the condition that also guarantees the

stability of the DA mechanism (Kennes et al., 2014) –, then the DA mechanism is approximately

strategy-proof in large markets. Specifically, in Theorem 4, we show that the fraction of agents

who may have incentives to misreport their preferences when all other participants are reporting

truthfully approaches zero as the market size tends to infinity. What our result suggests is that the

DA mechanism can be successfully implemented in practice provided that the schools’ priorities

satisfy the above mentioned condition.

On the other hand, if the schools’ priorities depend on the previous allocation in ways other

9Both Kennes et al. (2014) and Dur (2011) prove an impossibility result: there exists no strategy-proof and
stable mechanism. Pereyra (2013) shows that if we restrict the markets to include only seniority-based priorities and
time-invariant preferences, then the DA mechanism is strategy-proof.

10The scope for manipulation generates dissatisfaction and frustration on agents, exemplified by recent report
from The Boston Globe (Ebbert (2011)).

11Indeed this incentive for manipulation is present for another celebrated mechanism, the Top-Trading Cycles.
In fact, a stronger result is proved in Monte and Tumennasan (2013): the only mechanism that is Pareto efficient,
nonbossy and strategy-proof is the sequential dictatorship.
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than simply by assigning the highest priority to incumbent students, then the DA mechanism

remains manipulable even in large markets. In fact, this is the case with the assignment system

of young children to public day care centers in Denmark, which is one of the practical dynamic

matching problems we have in mind. In Denmark, the day care centers adopt a priority structure

that violates the condition that we described above. Namely, in the Danish system it is often the

case that a day care institution gives high priority to a child who was eligible to participate in the

assignment system in the previous period, but has not been allocated to any day care–precisely, this

child receives the highest priority than those who attended any day care institution other than the

one in question. This rule is denoted “child care guarantee.” If the deferred acceptance mechanism

is applied period-by-period in a market with a priority structure that follows the Danish priorities,

the system remains manipulable even in a large market.

We then proceed through simulations to show how often agents have an incentive to manipulate

the DA mechanism in dynamic matching markets. There is, however, a significant computational

complexity involved here. To illustrate, consider a market with 30 schools. In this market, any

given agent has a strategy set of more than 1032 (30!) elements. Thus, checking each possible

manipulation is not a feasible task. In static marriage problems it is well-known that to evaluate

whether an agent, say a woman, has an incentive to manipulate the men-proposing DA mechanism

it suffices to check the truncation strategies – those in which the woman only reduces her acceptable

matches without rearranging her preference ranks of the men. It turns out, however, that sometimes

agents in dynamic matching markets can manipulate the DA mechanism only by rearranging their

preference ranking of the schools. Therefore, truncating or dropping strategies are not sufficient to

identify whether the DA mechanism is manipulable in certain markets. At the same time, as we

mentioned above, one cannot hope to consider all of an agent’s possible preference reports because

the number of these reports increases exponentially as the market size increases. We provide an

algorithm that drastically decreases the complexity of this problem, making it feasible to check

every possible manipulation for any given agent. The first observation we use in the construction

of our algorithm is that any two-year old student should reveal her true preferences because the

DA mechanism is strategy-proof in static settings. Thus, only one-year-old agents can have an

incentive to manipulate the DA mechanism. Let us fix a one year old child and suppose that all the

other agents reveal their preferences truthfully. If this one-year-old agent can manipulate the DA

successfully by submitting a particular preference report, then all the preference reports that lead

to the same matching must also be a beneficial manipulation for the agent. It turns out that in a

typical market, there is only a limited number of matchings produced by the DA mechanism when

an agent varies her preference reports. We use this result in the construction of our algorithm.

Specifically, in each round our algorithm finds that the DA matching corresponds to some report of

a given one year agent and disregards all the preference reports that lead to the same DA matching.

Thus, our algorithm runs the same number of rounds as the number of different DA matchings to

which the preference reports of the one-year-old agent leads.

Using the algorithm described above, which we believe is of independent interest, we estimate
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the percentage of the markets in which a given agent can successfully manipulate the DA mechanism

based on randomly generated data. In markets with fifty schools, this percentage is 1.05% if each

school’s capacity is one; it drops to 0.03% if each school’s capacity is 20. In markets with 100

schools, the manipulation percentage is 1.58% if each school’s capacity is one; it drops to 0.04%

when the capacity is 20. Therefore, the manipulation percentage of the DA mechanism quickly

converges to 0.

Our theoretical and simulation results therefore justify the use of the period-by-period DA

mechanism in practice. For instance, the Boston school district uses a system with sibling priority

and assigns the students to schools using the period-by-period DA. Given the schools’ capacity and

the number of the students, our analysis shows that the manipulability of the DA mechanism in the

Boston Public School system is negligible. Similarly, the school districts can handle the assignment

of students who move into their district as well as the students who want to switch schools after

the initial DA placement through the DA mechanism without fearing strategic manipulations. The

same conclusion holds for the assignment of the agents to day care institutions in Denmark.

1.1 Related Literature

Our paper is related both to the literature on dynamic matching as well as the literature on match-

ing in large markets. Kurino (2014), Pereyra (2013), Dur (2011) and Kennes et al. (2014) study the

centralized matching when the set of agents evolve in the overlapping generations fashion. Kurino

(2014) focuses on the house allocation problem, and he shows that seniority based top trading

cycles mechanism is dynamically efficient, acceptable and strategy-proof under time-invariant pref-

erences. Pereyra (2013) shows that the DA mechanism is stable and strategy-proof under seniority

based priorities and time-invariant preferences. Because the older generation gets a higher prior-

ity than the younger generation and the agents have time-invariant preferences in both studies,

their corresponding mechanisms effectively consider the older generation first and then the younger

generation in each period. This is the main reason why Kurino (2014) and Pereyra (2013) obtain

positive results. Dur (2011) models the school choice problem as a dynamic problem taking the

sibling priorities into account. Kennes et al. (2014) consider the problem of allocating children to

day care centers where each child attends day care centers in multiple periods and participating

children evolve in the overlapping generations fashion. Both Dur (2011) and Kennes et al. (2014)

show that (i) the DA mechanism results in a stable matching and (ii) no mechanism is both stable

and strategy-proof. The key reason for their impossibility results is that they consider a much

broader class of schools’ priorities than the seniority based ones, due to the applications considered

in these papers. Bloch and Cantala (2013)’s dynamic matching problem is similar to ours, but they

focus on the long-run properties of different assignment rules. Ünver (2010) studies the kidney

exchange problem considering a dynamic environment in which the pool of agents evolves over

time.

In this paper we use the concept of stability for dynamic environments that we introduced

in Kennes et al. (2014). Other authors have worked with similar concepts before us; Kurino
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(2009a), Kurino (2009b), and Damiano and Lam (2005) had a different concept than ours, assuming

farsighted agents. More recently, Doval (2014) introduced a dynamic stability concept, but her

model differs from ours in that agents arrive over time and are matched at most once. Kadam and

Kotowski (2014) study a repeated two-sided market and introduce different stability notions, more

suitable to their environment, in which the classes of preferences and priorities are different from

ours.

Compte and Jehiel (2008) introduced a model in which agents are reallocated to positions with

the restriction that in their new position they are not worse off than they were initially. Thus,

our problem relates to theirs in the sense that we assume property-rights in the priority system of

schools; students allocated to schools cannot be involuntarily placed in worse schools in subsequent

periods.

Our paper is also related to the literature on large matching markets, for which there is a

broad recent literature.12 Mostly, it relates to Roth and Peranson (1999), Immorlica and Mahdian

(2005), Kojima and Pathak (2009) and in particular, to Azevedo and Leshno (2013). Roth and

Peranson (1999) stipulate that the percentage of participants who can successfully manipulate

the DA mechanism converges to 0 as the market size increases based on a series of simulations

on the National Residence Matching Program data and on randomly generated data. Immorlica

and Mahdian (2005) and Kojima and Pathak (2009) consider one-to-one and many-to-one settings

respectively and show that the incentives to manipulate the DA mechanism vanishes as the market

size increases in their respective settings. In Immorlica and Mahdian (2005) and Kojima and Pathak

(2009), both sides of the market grow whereas in our study one side of the market, namely agents,

increases along with the capacities of the schools. In static matching settings Che and Kojima

(2010), Abdulkadiroğlu et al. (2014), Che and Tercieux (2014), Azevedo and Hatfield (2013) and

Azevedo and Leshno (2013) consider the dynamics of the market size growth we study here: a

large number of agents matched to a finite number of objects. Che and Kojima (2010) show that

the probabilistic serial dictatorship mechanism becomes strategy-proof as the number of agents

along with the copies of the objects tend to infinity because this mechanism is equivalent to the

random serial dictatorship mechanism. Che and Tercieux (2014) study efficiency and stability in

large (static) matching markets and focus on the payoffs achieved by the agents in a large class

of mechanisms–not just the DA. Azevedo and Leshno (2013) consider the convergence of stable

matchings in many-to-one matching settings as the market size increases, and they show that in a

wide class of markets the stable matchings converge to a matching which is a unique stable matching

in the continuum economy. We use some of the Azevedo and Leshno (2013)’s results extensively,

but our paper differs from Azevedo and Leshno (2013)’s in two major aspects: (i) our focus is the

manipulation of the DA while theirs is stability in large or continuum economies, and (ii) we study

dynamic environments while Azevedo and Leshno (2013) concentrate on a static setting.

12See Roth and Peranson (1999); Immorlica and Mahdian (2005); Kojima and Pathak (2009); Manea (2009); Che
and Kojima (2010); Kojima and Manea (2010); Kojima et al. (2013); Liu and Pycia (2012); Azevedo and Leshno
(2013); Che and Tercieux (2014); Abdulkadiroğlu et al. (2014); Azevedo and Hatfield (2013); and Azevedo and Budish
(2013).
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The paper is organized as follows: in Section 2, we provide the model and the main definitions.

In Section 3 we describe a version of the deferred acceptance mechanism, from Kennes et al. (2014).

In Section 4 we examine the main properties of the mechanism in small economies. In Section 5

we provide our algorithm to check whether an agent can manipulate the DA mechanism, and we

present our simulation results on the manipulability of the DA. Section 6 contains the results for

an economy with a continuum of agents. In Section 7 we prove our main convergence result. The

longer proofs are in the Appendix.

2 Model

2.1 Setup

Time t is discrete and t = 1, · · · ,∞. There is a finite number of infinitely lived schools.13 Let

S = {h, s1, · · · , sm} be the set of schools as well as the option of staying home, h. Let r = (rs)s∈S

be the vector of capacities, with rs ∈ N. We assume that each school other than home has a finite

capacity, rs <∞, for all s 6= h whereas home does not have a capacity constraint, that is, rh =∞.

We assume that each agent can attend school when she is one and two years old.14 If an

agent attends schools s and s′ when she is 1 and 2 respectively, then we write (s, s′) to denote the

allocation of this agent.

An agent i is one year old in period ti. In addition, this agent has a strict preference relation

�i over the set of possible pairs of schools, and is initially endowed with a priority score vector,

xi = (xsi )s∈S ≡ [0, 1)m+1. It is convenient to think that each agent i is a triplet (ti,�i,xi) and to

write that i = (ti,�i,xi).
At period t ≥ 1, a finite set of one year old agents It arrives, i.e., i ∈ It if and only if ti = t.

We use the notation I0 to denote the set of the agents who are two in period 1. Consequently,

at any period t ≥ 1 the set of school-age agents is It−1 ∪ It. As time passes the set of school-age

agents evolves in the “overlapping generations” (OLG) fashion. Let I = (It)
∞
t=0. A finite economy

E = (I, r) specifies a finite set of agents per cohort and a vector of capacities.

We now define the matching in our setting.

Definition 1 (Matching). A period-0 matching µ0 is a correspondence µ0 : I0 ∪ S → I0 ∪ S such

that

1. For all i ∈ I0, µ0(i) = {h}.

2. µ0(h) = I0 and µ0(s) = ∅, for all s 6= h

13Equivalently, one could think of daycare centers instead of schools, as in Kennes et al. (2014)’s prototypical
application.

14In the school choice setting with siblings, this assumption is equivalent to the one in which each family has two
children. Incorporating families with one child into the model is straightforward (Dur, 2011): in each period there is a
set of agents who participate in the allocation process only once in the period they are one and who have preferences
over schools. Now from the school choice literature, we know that these agents will not have any justified envy or
strategic manipulation if the DA mechanism is used.
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A period-t matching at any t ≥ 1, µt, is a correspondence µt : It−1 ∪ It ∪S → It−1 ∪ It ∪S such

that

1. For all i ∈ It−1 ∪ It, |µt(i)| = 1 and µt(i) ⊂ S

2. For all s ∈ S, |µt(s)| ≤ rs and µt(s) ⊂ It−1 ∪ It15

3. For all i ∈ It−1 ∪ It, i ∈ µt(s) iff s ∈ µt(i).

A matching µ is a collection of period matchings: µ = (µt)
∞
t=1.

We slightly abuse the notation by using the notation µt(i) to denote the school to which agent

i is matched under µt. We use the notation µ(i) to denote the pair of schools that i is matched

with under matching µ: µ(i) = (µti(i), µti+1(i)). Let Mt be the set of period t matchings.

From the definition above, observe that in period 0, every agent stays home, i.e., the schools

start their operation at period 1. As a consequence of this assumption, all matchings we consider

have a common period-0 matching in which all school-age agents are matched with h.16

Agents’ Preferences

We already noted that each agent i has strict preferences, �i. We write (s, s′) �i (s̄, s̄′) if either

(s, s′) �i (s̄, s̄′) or (s, s′) = (s̄, s̄′).

We will impose some restrictions on agents’ preferences. First we assume that each agent

has an underlying ranking over schools (not the pairs of schools) which stays stable over time.17

Consequently, if a school s is superior than another school s′, then it must be that (s, s) �i (s′, s′).

In addition, we assume that there is no complementarity from attending two different schools but

there could be from attending the same school for two periods. Specifically, attending an inferior

school s′ in one period and a different school s′′ in the other eligible period is always worse than

attending a superior school s and school s′′. On the other hand, attending s′ for two periods may

be better than attending the superior school s in one period and s′ in the other eligible period. This

latter scenario could be due to switching costs. These assumptions are collected in the following

assumption, which we will maintain throughout the paper.

Assumption 1 (Rankability). If (s, s) �i (s′, s′) for some i, s and s′, then (s, s′′) �i (s′, s′′) and

(s′′, s) �i (s′′, s′) for any s′′ 6= s′.

Let R be the set of preferences satisfying Assumption 1.

15It can be that µt(s) = ∅ for some school s. In such cases, no agent attends s at period t.
16We can relax this restriction so that a period-0 matching is defined similarly to the other period matchings.

Given that we interpret period 0 as the period that occurred right before the start of our model, period-0 matching
cannot be altered. Thus, all matchings must have a common period-0 matching which is one of the primitives of the
model. With the modified definition of a period-0 matching all the results except those in section 7 go through. In
Remark 1 we will present an additional assumption that guarantees the validity of results in Section 7.

17In the school choice with siblings setting this means that two children of the same household have the same
preferences of schools. Although one can think of cases in which this assumption is violated, we believe that our
assumption is valid for majority of cases, especially for the elementary or middle school students.
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Now let us define a stronger version of the rankability assumption which rules out the possibility

that attending an inferior school for two periods is better than attending this school for one period

and a superior school in the other eligible period.

Definition 2 (Strong Rankability). If (s, s) �i (s′, s′) for some i, s and s′, then (s, s′′) �i (s′, s′′)

and (s′′, s) �i (s′′, s′) for any s′′.

The strong rankability assumption means that the switching costs are not too large. We remark

here that the sole purpose of the strong rankability assumption is to simplify the presentation of

some of our examples, i.e., none of our results rely on this stronger assumption.

Before we move on, consider period t ≥ 1, and suppose that the period matchings up till this

period are assigned. Let us now assume that the agents who are eligible to attend school in this

period are asked to rank the schools (not pairs of schools). Given the motivations for the rankability

assumption, perhaps any one year old agent i would rank s over s′ if and only if s is superior to s′,

i.e., if and only if (s, s) �i (s′, s′). A two year old, on the other hand, would rank s over s′ if and

only if (µt(i), s) �i (µt(i), s
′) given that she knows her match in the previous period. This is the

motivation behind the concept of isolated preferences considered by Kennes et al. (2014).

Definition 3 (Isolated Preference Relation). For any given period t ≥ 1, and for a given matching

µt−1, the isolated preference relation of period t, Pi(µt−1) is a binary relation satisfying

1. For ∀i ∈ It : sPi(µt−1)s′ if and only if (s, s) �i (s′, s′) for any s 6= s′ ∈ S

2. For ∀i ∈ It−1 : sPi(µt−1)s′ if and only if (µt−1(i), s) �i (µt−1(i), s′) for any s 6= s′ ∈ S.

We here note that in any period the isolated preferences of 1-year old agents do not depend

on the preceding period’s matching. Let P (µt−1) be the collection of isolated preferences for the

school-age agents in period t, i.e., P (µt−1) ≡ (Pi(µt−1))i∈It−1∪It . In addition, the notation P
denotes the set of all possible isolated preferences. We will usually write Pi instead of Pi(µt−1) as

long as doing so does not create confusion.

We note here that if an agent’s preferences are strongly rankable, then her isolated preferences

will be the same regardless of her age or the previous period’s matching.

Schools’ Priorities and History Dependence

We previously mentioned that each agent i is endowed with a priority score vector xi. This

priority score vector will be used to determine the agent’s priority in each school in the period that

this agent is one-year old, i.e., in period ti. It is fixed at the agent’s birth year, but may change

in the following period when the schools’ priorities are history-dependent, which we will assume.

If an agent i has a priority score vector xi and an agent j, born in the same period has a priority

score vector given by xj , with xsi > xsj , for some s ∈ S, we have that agent i has a higher priority

in period ti than agent j at school s.
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Assumption 2 (Strict Priorities). For any two agents i, j in It−1 ∪ It, xsi 6= xsj for all s ∈ S.

Given the dynamic nature of our problem, in our model we will consider the case in which the

priority score of agent i at period ti + 1 depends on the previous period’s matching. Conceptually,

we do not impose any restriction on how this history-dependence occurs, that is, we imagine that

there might be dynamic matching problems in which the priority vector of a agent varies across time

in a variety of different ways. However, in our model we will consider only two specific channels

through which the priority vector of an agent may change over time. This is motivated by natural

applications of dynamic matching problems, such as the centralized assignment of young children

to public day care centers, the assignment of teachers to public schools, and when there is priority

for incumbent students and their siblings in the school choice problem.

The two instances in which the priority vector of an agent might change from one period to

another are: 1) the schools give the highest priorities to their currently enrolled agents; and 2)

schools give priority to agents who were not enrolled in any school in the previous period. The

first channel is motivated by the concept of property-rights: in our example, this would imply

assigning high priorities to previously allocated students. This feature is present in many real-life

applications. In particular, this is the case in the Danish day care system. It is also the case

in other assignment problems, for example in the assignment of teachers to public schools within

countries as diverse as France, Brazil, and Mexico. Given the importance of this restriction for

many different systems and on its natural appeal, i.e. agents will not be forced out of a school, we

will maintain this assumption throughout our paper.

To incorporate the history-dependence of priorities in our model, we define the priority score

function of each agent i at school some school s as a mapping Xs
i :Mti−1 ∪Mti → [0, 2] such that

Xs
i (µti−1) = xsi for all µti−1 ∈Mti−1. This means that if a period-t matching was µt ∈Mt, then at

period t+1 the priority score of a school-age agent i at school s is Xs
i (µt).

18 If i was born in period

t+ 1, then her priority score at school s must be Xs
i (µt) = xsi , which is exogenously determined.

For a given matching µt ∈ Mt, we denote the priority score vector of s at period t + 1 by

Xs(µt) ≡ (Xs
i (µt))i∈It∪It+1 and school-age agent i’s priority scores at all schools by Xi(µt) ≡

(Xs
i (µt))s∈S . We will maintain the following assumption throughout the paper.

Assumption 3 (Independence of Past Attendances (IPA)). Each agent’s priority score function

at any school s satisfies that:

Xs
i (µti) =

{
1 if i ∈ µti(s)
xsi otherwise

for all µti ∈Mti.

This assumption states that an agent who is matched to a school s when she is one will have

the highest priority score at school s when she is two. In addition, the agent’s priority score at

18Moving forward it is convenient to have one notation that expresses the priority scores of both one- and two-
year-old agents.
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any other school remains the same unless she was matched to that school at the age of 1. Here,

observe that the attendees of any school s at some period t will have the same priority score of 1

at the school in the following period. This assumption, as we will see later, does not cause any

problem running the version of the deferred acceptance algorithm used in this paper– note that

given assumption 2 we will never have the problem that there are more students with the same

score at a school than the school’s capacity.

In the current Danish day care assignment system IPA is not satisfied: if an older child who

has not attended any day care previously asks for a guaranteed spot then at some day care she is

given a priority over all the children who have attended some day care previously as well as some

younger children who are participating in the assignment process for the first time.19 The current

rule does not spell out for which day care this older child gets a priority.20 Due to incompleteness

of this rule, we cannot accurately define the current Danish priority system. However, given its

practical importance we would like to examine the current Danish priority system closely when we

study the incentives to manipulate the deferred acceptance mechanism. Consequently, in section 6,

in particular in Theorem 3 we will consider the case in which assumption 3 is violated in a specific

way: each school assigns a higher priority to two-year-old children who have not attended any

school in the previous period over one-year-old children and two-year-old children who previously

attended a school other than the one in question.21 That is, we maintain the property-right feature

of our IPA assumption, but also add the feature that children who have not attended any school

have higher priority over other children who attended some school.

Assumption 3a (Failure of IPA: Danish Priorities). A priority scoring system is Danish

if each agent’s priority score function at each school s satisfies the following condition condition:

Xs
i (µti) =


2 if i ∈ µti(s)
1 + xsi if i ∈ µti(h)

xsi otherwise

for all µti ∈Mti.

In the Danish priority scoring system an agent who stays at home when she is young will have

a priority score of 1 + xsi at school s in the following period. Consequently, by staying home at

age 1, an agent jumps ahead of almost all agents (except the school’s previous period’s attendees)

in the priority ranking of any school at age 2. However, observe here that the relative rankings of

those who stay home when they are age 1 do not change.

Threshold Scores

For a given matching µ, let the period-t threshold score of school s corresponding to µ be pst

19Children who have special needs (due to disability or due to a foreign language spoken at home) or who have
siblings at a specific daycare always have higher priority over the children who ask for a guaranteed spot

20It looks like the officials in charge of the assignments decide this.
21This assumption is stronger than what is actually done in practice, however, it illustrates the issue well.
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such that

pst =

{
0 if |µt(s)| < rs

infi∈µt(s)X
s
i (µt−1) otherwise

Observe here that the threshold score of h corresponding to any matching is always 0 because h does

not have any capacity restriction. We use the following notations: pt = (pst )s∈S and p = (pt)
∞
t=1.

2.2 Mechanism

A mechanism (for finite economies) is a systematic process that assigns a matching for each finite

economy. We use the notation ϕ to denote a typical mechanism for finite economies. Let ϕi(E) be

the pair of schools to which agent i is matched under ϕ. For each mechanism, there is an associated

preference revelation game. If no agent has incentives to misrepresent her preferences in this game,

then we say the mechanism is strategy-proof. Below we state the formal definition.

Definition 4 (Strategy-Proofness). We say that a mechanism ϕ is manipulable (individually) at

a finite economy E if there exists an economy E′ = (I ′, r), and an agent i ∈ I, such that

1. E′ differs from E only in agent i’s preference ordering (i.e., �i 6=�′i and �j=�′j, for all j 6= i)

and

2. ϕi(E
′) �i ϕi(E).

A mechanism ϕ is strategy-proof if it is not manipulable for any finite economy.

3 Deferred Acceptance Mechanism using Isolated Preferences

We argued that isolated preferences represent the agents’ period preferences over schools when we

considered the agents’ preferences. Consequently, a natural mechanism is the period-by-period Gale

and Shapley deferred acceptance mechanism that utilizes the isolated preferences. Kennes et al.

(2014) consider this mechanism and denote it by Deferred Acceptance Mechanism using Isolated

Preferences (DA-IP). In this mechanism the school-age agents in any given period report their

isolated preferences over schools knowing their previous period’s matchings. Formally, the DA-IP

mechanism associates each economy with the matching that is the result of the DA-IP algorithm,

which we define below.

Fix a finite economy E. Because this paper revolves around the DA-IP mechanism, we reserve

the notation η for the matching that is the result of the DA-IP algorithm. Recall that for all

matchings, every agent stays home in period 0. Thus, every agent is assigned h at η0. The DA-IP

algorithm determines period-1 DA-IP matching η1 using η0. Once the period-1 DA-IP matching is

determined, the algorithm uses this matching to determine the period-2 DA-IP matching η2, and

it does so for every subsequent period. The period-1 DA-IP matching is found by running the

following algorithm in finite rounds (in essence, the well-known deferred acceptance algorithm).
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Period-1 assignment:

Set the isolated preferences for each school-age agent i in this period to Pi(η0). In addition, set

the priority score vector of each school s in this period to Xs(η0).

Round 1: Each school-age agent of period 1 applies to her most preferred school according to her

isolated preferences (Pi(η0) in this case). Each school s then “holds” the rs applicants with the

highest priority score (according to Xs(η0) in this case) and rejects all others.

In general, at:

Round k: Each agent whose application was rejected in the previous round applies to her most

preferred school (according to her isolated preferences, Pi(η0) in this case) that has not rejected

her. Each school s considers the pool of applicants composed of the new applicants and the agents

whom s has been holding from the previous round. Each school s then “holds” the rs agents in the

pool who have the highest priority score (according to Xs(η0) in this case) and rejects all others.

The algorithm terminates when no proposal is rejected and each agent is assigned her final tentative

assignment. This final matching is η1.

Period-2 assignment:

Set the isolated preferences of each school-age i in this period to Pi(η1) and the priority score

vector of each school s in this period to Xs(η1). Now using the algorithm described above, we can

find the period-2 DA-IP matching η2.

Period-t assignment:

Set the isolated preferences of each school-age i in this period to Pi(ηt−1) and the priority score

vector of each school s in this period to Xs(ηt−1). Now using the algorithm described above, we

can find the period-t DA-IP matching ηt.

As we mentioned in the Introduction, stability is a key reason why the DA plays a prominent

role in static settings. In fact, its adoption in dynamic settings – DA-IP – also turns out be stable

as long as the preferences satisfy IPA (Theorem 1 of Kennes et al. (2014)).22,23 For this reason we

22Formally, a matching µ is stable if at any period t ≥ 1, there does not exist a school-agent pair (s, i) such that
(1) and (2) below hold at the same time

1. (a)

(b) (s, µt+1(i)) �i (µt(i), µt+1(i)), or

(c) (s, s) �i (µt(i), µt+1(i)), or

(d) (µt−1(i), s) �i (µt−1(i), µt(i)),

2. |µt(s)| < rs or/and Xs
i (µt−1) > Xs

j (µt−1) for some j ∈ µt(s).

The definition above is equivalent to the one of Kennes et al. (2014) when the preferences satisfy IPA (Lemma 2
of Kennes et al. (2014)).

23We were not the first ones to introduce the notion of stability to a dynamic context. Other definitions prior to
ours include Kurino (2009a)’s notion of dynamic pairwise-stability, and Damiano and Lam (2005)’s self-sustaining
stability. Differently from our stability notion, in these authors’ notions, it is assumed that agents are farsighted. A
more recent paper by Kadam and Kotowski (2014) introduces the notions of ex-ante and dynamic stability– which
are complementary to our notions– in a dynamic two-sided matching markets.
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concentrate on the DA-IP mechanism in this paper.

4 Manipulation in Small Economies

It is well known that in static settings, the student proposing DA mechanism is strategy-proof.

In contrast, Kennes et al. (2014) show that in dynamic environments the DA-IP mechanism is

not strategy-proof,24 i.e., in some small economies an agent finds it profitable to misrepresent her

preferences (when everyone else reports her preferences truthfully).

Theorem 1 (DA-IP is Manipulable). The DA-IP mechanism is not strategy proof.

Below we present an example that is different form the one Kennes et al. (2014) use in their

proof of the impossibility result. The current example illustrates that agents do not have to get

worse off in her first period in order to manipulate the DA-IP, i.e., a manipulating agent gets to be

assigned to the same school that she would get assigned under truth-telling.

Example 1. Consider the following economy E with five schools s1, s2, s3, s4 and s5, and six agents,

i1, i2, i3, i4, i5 and i6. Each school has a capacity of one agent and suppose that I0 = {i1, i2},
I1 = {i3, i4, i5}, I2 = {i6}.

Each agent’s preferences are strongly rankable, and the agents’ isolated preferences are as fol-

lows:
i1 : s1

i2 : s2

i3 : s1 s5 s3 s4 s2

i4 : s4 s2 s3 s5 s1

i5 : s3 s1 s4 s5 s2

i6 : s4 s1 s3 s5 s2

The priority scores of the agents are follows:

xs1i1 > xs1i6 > xs1i3 > xs1i4 > xs1i5 > xs1i2

xs2i2 > xs2i4 > xs2i1 > xs2i3 > xs2i5 > xs2i6

xs3i6 > xs3i4 > xs3i3 > xs3i5 > xs3i1 > xs3i2

xs4i6 > xs4i5 > xs4i3 > xs4i4 > xs4i1 > xs4i2

xs5i3 > xs5i5 > xs5i4 > xs5i2 > xs5i1 > xs5i6

Let E′ be an economy which differs from E only in agent i3’s preferences, which are still strongly

rankable and given by:

i3 : s1 s3 s5.

24Their result is even stronger: no strongly stable and strategy proof mechanism exists.
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The DA-IP matchings in economies E and E′ are given

Period 1 Period 2

EconomyE

(
s1 s2 s3 s4 s5

i1 i2 i5 i4 i3

) (
s1 s3 s4 s5

i6 i5 i4 i3

)

Economy E′

(
s1 s2 s3 s4 s5

i1 i2 i4 i5 i3

) (
s1 s2 s3 s4

i3 i4 i5 i6

)
Thus, agent i3 has an incentive to manipulate the DA-IP mechanism at economy E. Interest-

ingly, agent i3 still gets to match with school s5 in period 1 but gets to match with a better school,

s1 in period 2.

In this example, agent i3 manipulates the DA-IP successfully by ranking s3 ahead of s5 in her

preference report of period 1, and there is no other preference report that improves i3 over truth

telling. This means that agents must alter the relative ranking of the schools in order to successfully

manipulate the DA-IP mechanism.

Observe from the example above that at her successful manipulation an agent gets weakly worse

when she is age 1 but gets better when she is age 2. This turns out to be a general phenomenon as

shown in Lemma 1.

Lemma 1. If an agent i can successfully manipulate the DA-IP mechanism in a finite economy

E, then i cannot be born in period 0. In addition, if the DA-IP matchings in economy E and at i’s

successful manipulation are η and η̂ respectively, then the following conditions must be satisfied:

(η̂ti+1(i), η̂ti+1(i)) �i︸︷︷︸
1

(ηti+1(i), ηti+1(i)) �i︸︷︷︸
2

(ηti(i), ηti(i)) �i︸︷︷︸
3

(η̂ti(i), η̂ti(i)). (1)

Proof. See Appendix C.

This lemma shows that to manipulate the DA-IP mechanism successfully, one will have to

accept a weakly worse allocation when she is young in order to improve her future assignment.

This is indeed true even in the Danish priority system for which IPA is violated. However, there

is an essential difference in the information required for manipulation. But before we discuss this,

let us present an example of a system with the Danish priority structure in which the DA-IP is

manipulated.

Example 2 (Manipulability of the DA-IP). Consider the following example: there are 2 schools

{s1, s2} and each school has a capacity of one agent. Suppose I0 = {i0}, I1 = {i1}, I2 = {i2} and

Iτ = ∅ for all τ ≥ 3. All agents’ top choice is s1, but worst choice is h. Each agent’s preferences

are strongly rankable but satisfies the following condition

(h, s1) � (s2, s2).
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In addition suppose that

xsi0 > xsi2 > xsi1

for each s = s1, s2. Here we assume that the priority system is Danish.

In this economy, agent i1’s allocation is (s2, s2) under the DA-IP mechanism. Now suppose that

i1 reports that her first choice is s1, but her second choice is h. In this case, agent i1 obtains (h, s1)

under the DA-IP mechanism. Hence, agent i1 has an incentive to manipulate.

Examples 1 and 2 suggest that successful manipulations for different priority systems differ in

terms of required “sophistication.” In the Danish system by staying home when an agent is young,

she jumps ahead of almost everyone in the priorities of all schools. This is a relatively simple

manipulation as it only involves one action, which is staying home when young – which ultimately

improves the agent’s priority score relative to the scores of others. On the other hand, manipulating

the DA-IP mechanism in systems satisfying IPA is rather difficult. To see this let us concentrate on

the example 1. When agent i3 misreports her preferences, the agent who was matched to school s1

in period t+1 under truth telling (in our case i6) will still have priority over i3 at school s1. In other

words, agent i3’s priority score at s1 does not improve at all no matter what she does. This means

that agent i3’s manipulation must benefit agent i6 so that she never applies to school s3. This, of

course, is possible in the example we considered, but the agent must be rather sophisticated to see

through all of these possible effects of her manipulation.

5 Simulation Study

In this section, we study how widespread the manipulability of the DA-IP mechanism is using

randomly generated data. In particular, we estimate the percentage of markets in which a given

agent can manipulate the DA-IP mechanism. To do this, one first need to figure out whether a given

agent has a successful manipulation of the DA-IP. A brute force – checking all possible preference

reports of an agent – does not take us far because there are (|S|!)2 number of preference reports (the

number of isolated preference reports in each period is |S|!). Of course, the brute force approach

is not feasible in the static marriage and the many-to-one matching problems, but there are two

types of strategies – truncating and dropping – that are sufficient to check whether an agent has

a successful manipulation of the static DA mechanism. Unfortunately, as our Example 1 shows,

focusing on such strategies could miss some successful manipulations. Thus, we propose a novel

algorithm to check if an agent has a successful manipulation of the DA-IP in the next subsection.

We believe that the algorithm that we will present can be useful in other contexts. For instance,

one can estimate one agent’s impact on others using our algorithm in static settings in which the

DA is used. Also one perhaps can study different properties of the DA mechanism. For example,

it is well-known that the DA mechanism is bossy25, i.e., an agent sometimes can misreport her

preference and alter others’ allocation without changing her own allocation. With the help of our

25See Kojima (2010).
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algorithm one can figure out how often an agent has a bossy manipulation.

5.1 Theoretical Results

In this subsection, we present a simplified version of our algorithm to check whether an agent has

a successful manipulation of the DA-IP. The interested readers can find the full version of our

algorithm, used in our simulation, in Appendix D.

We first note that for any two-year-old agent the DA-IP mechanism is a static DA mechanism.

Thus, no two-year old agent has an incentive to misreport her isolated-preference because the

DA mechanism is strategy-proof in the static school choice problem. As a result, any manipulating

agent must misreport her isolated-preference when she is one year old. Secondly, each manipulating

agent’s submitted isolated-preference report at the period she is age one must alter the period

matching of that period. Otherwise, no agent’s priority score or isolated preference differ from the

ones under truth-telling. This suggests that we need to find all the DA-IP matchings that follow

from a one-year-old agent’s isolated-preference reports. As a first step in this direction, first we

identify the schools that i can get matched in period t by reporting some isolated preference reports.

For the remainder of this section, we fix an economy E as well as an agent i who is one year

old in period t ≥ 1. We are investigating whether i can manipulate the DA-IP at economy E.

To ease the presentation we do not mention economy E or that agent i is born period t in any

of the results that follow. All the agents other than i report their isolated preferences truthfully

(as given in economy E). Furthermore, we will only concentrate on period t as this is the period

when i potentially misreports her isolated-preference to manipulate the DA-IP mechanism. Thus,

unless otherwise stated, we discuss only period-t DA-IP mechanism and period-t isolated-preference

reports of the agents with respect to the previous period’s DA-IP matching ηt−1. Thus, we simplify

the notations by writing Pi instead of Pi(ηt−1).

We say a school s is attainable (for agent i) if there exists an isolated-preference report P ′i such

that the DA-IP mechanism allocates i to s in period t if i submits P ′i (while the other school-age

agents in period t submit their isolated-preference reports, truthfully). A school s is non-attainable

for i if the DA-IP mechanism does not allocate i to s regardless of i’s report. We reserve the

notations SA and SNA for the set of attainable and non-attainable schools, respectively. The

lemma below is the basis of our algorithm to find all attainable and non-attainable schools.

Lemma 2. Let s be an attainable school. The DA-IP allocates i to s if and only if i submits an

isolated-preference report which list only non-attainable schools ahead of s.

Proof. See Appendix D.

We now present a simple algorithm to find all the attainable and non-attainable schools.

The Algorithm to Find the Set of Attainable and Non-attainable Schools
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Round 1. Agent i updates her true isolated-preference report by placing h at the very end of

her list. Find the DA-IP matching for this case and call this matching µ1
t . Set SA1 = {µ1

t (i)}.

Round 2. Agent i updates her report from the previous period by only placing µ1
t (i) at

the very end of her list. Find the DA-IP matching for this case and call this matching µ2
t . Set

SA2 = SA1 ∪ {µ2
t (i)}.

Round k. Agent i updates her report from the previous period by only placing µk−1
t (i) at

the very end of her list. Find the DA-IP matching for this case and call this matching µkt . Set

SAk = SAk−1 ∪ {µkt (i)}.

The algorithm stops at the very first round k∗ at which i is allocated to h. The sets of attainable

and non-attainable schools are SA = SAk∗ and SNA = S \ SA.

We note that h is attainable because child i is assigned to h if she ever applies to h at any round

of the DA-IP algorithm. Due to Lemma 2, the algorithm finds the highest ranked attainable school

within i’s report in a given round. In addition, the algorithm is constructed so that i’s report in any

round ranks the attainable school found in the preceding round after h. As a result, the algorithm

not only yields a new attainable school in each round, but also finds all the attainable schools in

the exact order that were listed in i’s preference report of round 1. Consequently, the number of

rounds that the algorithm stops at is the number of attainable schools.

We now look for ways to find all the DA-IP matchings under which i is allocated to some

attainable school s. In Lemma 2 we showed that if i is to get allocated to s then she has to rank

s as the highest ranked attainable school in her submitted isolated-preference report. In other

words, the set of schools i ranks ahead of s must be a subset of the non-attainable schools. It is

not complicated to see that the DA-IP mechanism produces the same matching for two reports of

i that rank the same set of non-attainable schools ahead of s and in which s is the highest ranked

attainable school.26 Thus, the maximal number that one needs to run DA-IP mechanism in order

to find all the period-t DA-IP matchings under which i is allocated to some attainable school s is

2|SNA| – the number of all subsets of SNA. This number is obviously large if there are many non-

attainable schools. Fortunately, it also turns out that where i ranks some non-attainable schools in

her isolated-preference report does not affect the resulting DA-IP matching as long as i ranks s as

the highest attainable school. Thus, for each attainable school s, we now split the non-attainable

schools into two groups: redundant and non-redundant.

Definition 5. A school s′ is redundant for s ∈ SA if the DA-IP mechanism produces the same

26One can easily see that each DA-IP matching corresponding to one of these isolated preferences of i matching is
statically stable in the economy corresponding to the other isolated preference of i. It is well-known that each DA-IP
matching in any static economy is agent optimal stable matching in that economy. Combining this with the fact that
agent i is matched to school s at both DA-IP matchings, we find that each DA-IP matching Pareto dominates the
other. This of course means that the two DA-IP matchings must be the same.
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matching when i submits any two isolated-preference reports, P si and P̃ si ,

1. that rank s as the highest attainable school

2. that the sets of schools ranked higher than s under P si and P̃ si differ only in that one under

P si does not contain s′ while the one under P̃ si does.

A school s′ is non-redundant for s if s′ is non-attainable and not redundant for s. We use the

notations SR(s) and SNR(s) to denote the redundant and non-redundant schools for s, respectively.

Although the idea of redundant school is intuitive, its formal definition is not practical to check

if a school is redundant. However, it turns out that there is an alternative definition which is easy

to work with. In order to present this definition, we need some more notation. Fix an attainable

school s and write P̂ si to denote an isolated-preference report of i in which s is the first ranked

school. We write µ̂st to denote the DA-IP matching when i reports P̂ si .

Lemma 3. A school s′ is redundant for s ∈ SA if and only if the priority score of agent i at school

s′ is lower than the priority score of those who are matched to s′ under µ̂st , i.e.,

Xs′
i (ηt−1) < min

j∈µ̂st (s′)
{Xs′

j (ηt−1)}.

Proof. See the proof of Lemma 8 in Appendix D.

Let us pause here to explain the main intuition of the lemma above. First we argue that if a

non-attainable school s′ does not satisfy the condition described in the lemma above, then i’s two

reports, namely P̂ si and P̃ si which ranks s′ first and s second, lead to different DA-IP matchings.

Otherwise, the DA-IP produces µ̂st for P̃ si , but in the static economy corresponding to this report of

i, matching µ̂st is not stable (in the static sense). This is because i ranks s′ ahead of s under P̃ si , but

some agent who has a lower priority than i is matched to s′ under µ̂st . This would contradict that

the DA mechanism is stable in static school choice problems. Consequently, s′ is a non-redundant

school. If s′, on the other hand, satisfies the condition identified in the lemma, then s′ is non-

redundant. Proving this statement is somewhat lengthy, so here we instead show that i’s reports

P̂ si and P̃ si , lead to the same DA-IP matching, µ̂st . The discussion above implies that µ̂st is stable

(in the static sense) when i’s isolated-preference is P̃ si . At the same time, it is not complicated to

see that the DA-IP matching when i’s isolated-preference is P̃ si is also stable in the economy in

which i’s isolated-preference is P̂ si . Now using the lattice structure of the stable matchings in static

settings and the fact that the DA matching is the agent optimal stable matching, one finds that µ̂st

is the DA-IP matching when i’s isolated-preference is P̃ si .

Now we are ready to present our algorithm to find all the period-t DA-IP matchings under

which i is allocated to a given attainable school.

The Algorithm to Find the Set of Period-t Matchings under which i is Allocated to a Given

attainable School
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Fix an attainable school s.

Round 0. Fix an isolated-preference report of i in which s is ranked first. Find the DA-IP

matching when i submits this preference report, and let M0
t (s) be the set that consists of this

matching. Find all the non-redundant schools for s, i.e., SNR(s). Let SNR(s) = {S : S ⊆ SNR(s)}.

Round 1. For each S′ ∈ SNR(s), fix an isolated-preference report of i in which s is the highest

ranked attainable school and in which the set of schools that are ranked higher than s is S′. For

each of these fixed reports of i, find the DA-IP matchings and denote the set of these matchings

by Mt(s).

Proposition 1. The algorithm above yields all the period-t matchings that are the result of the

DA-IP mechanism for some report of i and in which i is allocated to s.

Proof. See the proof of Proposition 3 in Appendix D.

Now we are finally ready to present our algorithm to check the manipulability of the DA-IP

mechanism in a given economy by a given agent. Fix an economy E and an agent i. Suppose that

agent i is born in period t ≥ 1.

The Algorithm to Check the Manipulability of the DA-IP Mechanism

Step 1. Run the DA-IP mechanism in economy E until period t + 1 and find the DA-IP

matching of i.

Step 2. Find the set of attainable schools of i in period t.

Step 3. Consider the attainable schools sequentially. For a fixed attainable school s, find

the set of period-t matchings, Mt(s), under which i is allocated to s. Consider each µt ∈ Mt(s)

sequentially and find the period t+ 1 DA-IP matching, µt+1, assuming that every school-age agent

j reports her period t + 1 isolated preferences as Pj(µt). If µ(i) �i η(i), then stop the algorithm.

In this case, i can manipulate the DA-IP mechanism. Otherwise, consider the next matching in

Mt(s). If the algorithm does not stop before exhausting all the attainable schools and each period-t

matchings under which i is matched to an attainable school, then i cannot manipulate the DA-IP

mechanism.

5.2 Simulation Results

In this section, we generate markets randomly and then estimate the percentage of the markets in

which a given agent has a successful manipulation of the DA-IP mechanism. Given that each agent

participates in the assignment system twice, we only consider a two period version of our model.
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In our simulation exercise, half of the agents are born in period 1 and the other half in period

2. Half of the schools do not admit any agents in period 1 because here we assume that the two

year old agents in period 1 will take the seats in these schools. On the other hand, all the schools

admit agents in period 2. We vary the number of schools, the schools’ capacities and the number

of the agents. However, we assume that each market is balanced, i.e., the number of agents that

the schools can admit in each period is the same as the number of the school-age agents in that

period.

The agents’ payoff from holding a spot at a school (including homecare) is drawn according to a

uniform distribution on the [0, 1] interval. Each agent’s payoff from attending two (not necessarily

different) schools in two periods is the sum of the payoffs the agent obtains by holding a spot at

these schools. We are assuming here implicitly that the agents’ preferences are strongly rankable.

The agents’ priority scores are also drawn according to a uniform distribution on the [0, 1] interval.

The agents’ priorities satisfy IPA.

In our simulation exercise we vary the number of schools and the schools’ capacities. For each

combination of the number of schools and capacity, we randomly generate 10,000 markets, and in

each market we check whether agent #1 can manipulate the DA-IP mechanism using the algorithm

we proposed in the previous section. In Table 1 we present the percentage of markets in which

agent #1 has a successful manipulation.

Schools’ Capacity 10 schools 50 schools 100 schools

1 0.27% 1.05% 1.58%
5 0.12% 0.32% 0.31%
10 0.02% 0.04% 0.28%
15 0.01% 0.05% 0.21%
20 0% 0.03% 0.04%

Table 1: The percentage of markets in which a given agent can manipulate the DA-IP mechanism.

Table 1 shows that the percentage of markets in which a given agent can manipulate DA-IP

mechanism is low in general, and this number drops sufficiently close to 0 as the schools’ capacities

increase. For instance, if the schools’ capacities are 20, then agent #1 can manipulate in 4 out of

the 10,000 markets with 100 schools. The capacity of 20 agents is obviously small if we consider

the typical schools in the US. This result suggests that in the school choice problem with sibling

priorities, the DA-IP mechanism is approximately strategy-proof in practice. The same conclusion

holds for the school choice problem in which the students’ mobility is accounted. In the day care

problem, a typical day care institution has a capacity of more than 20 agents. As a result, in the

day care assignment problem, the manipulation of the DA-IP is unlikely.

In the simulations considered in Table 1, any agent’s payoff from staying home is drawn accord-

ing to a uniform distribution on the [0, 1] interval. Consequently, many agents rank home ahead of

some schools, which could be somewhat restrictive and affect the manipulation percentage. Thus,

we repeat our simulation exercise by assuming that each agent’s payoff from staying home is 0. For

each combination of the number of schools and capacity, we randomly generate 10,000 markets and
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report the results in Table 2.

Schools’ Capacity 10 schools 50 schools 100 schools

1 1.07% 2.99% 3.21%
5 0.36% 0.99% 0.93%
10 0.33% 0.56% 0.5%
15 0.16% 0.32% 0.28%
20 0.15% 0.27% 0.37%

Table 2: (Homecare as Worst Option) The percentage of markets in which an agent can manipulate
the DA-IP Mechanism where the home is the worst option.

The percentage of markets in which an agent can manipulate indeed increased significantly.

The main reason behind this result is that when each agent ranks home as the worst option,

the number of possible matchings an agent can induce by misreporting her preferences increases

significantly. When a child ranks a school ahead of the school she obtains under truth telling,

it generally leads to a sequence of rejections and new applications in the DA algorithm. When

home is not the worst option, the chance that this sequence ends with some agent choosing home

increases greatly. Therefore, an increase of the manipulable markets is expected under the current

simulations. However, the manipulation percentage still converges to 0 as the capacities of schools

increases. In fact, already when the schools’ capacities reach 20, the manipulation percentage is

negligible.

We next consider cases in which the agents have similar preferences. We assume that the schools

which are recruiting agents in period 1 are worse than the schools that are not recruiting. The idea

here is that because the better schools are highly demanded, their spots are filled with the agents

from the previous period. Specifically, the agents’ payoffs for the schools which are recruiting in

period 1 are drawn according to a uniform distribution on the [0, 0.5] interval while the ones for

the schools which are not recruiting in period 1 are drawn according to a uniform on the [0.5, 1]

interval. As in the previous case, each agent’s payoff from home is set to 0. We report our results

in Table 3, and for each case we generated 10,000 markets.

Schools’ Capacity 10 schools 50 schools 100 schools

1 0.27% 1.04% 1.46%
5 0.12% 0.63% 0.3%
10 0.05% 0.35% 0.31%
15 0.06% 0.15% 0.27%
20 0.04% 0.11% 0.14%

Table 3: (Similar Preferences): The percentage of markets in which an agent can manipulate the
DA-IP Mechanism when schools recruting in period 1 are worse than schools recruiting in period
2.

Here the percentage of the manipulable markets is in general small. The main reason is that in

period 2, the competition for the schools which were closed in period 1 is much fiercer than before
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because these schools are ranked better than the others for everyone. Because of this, even when

an agent succeeds to change the period 1 matchings, the chances that she gets a better school is

low simply because of high competition in period 2. Here again the trend that the manipulability

percentage decreases with the schools’ capacities stays the same.

Finally, we emphasize that in all of our simulations we assumed that the agent who is contem-

plating to misreport her preference knows everyone else’s preferences. This, of course, is a very

strong assumption in reality, implying that manipulation might be even less likely than what our

simulations show. Indeed, when we study the question of how one’s manipulation performs if there

is incomplete information, we obtain that manipulation is often a risky strategy, if not unambigu-

ously worse than truth-telling. Specifically, we assume that an agent who is about to misreport her

preference knows the payoffs and priorities of the agents who are born at the same time period as

her, but not of those who are born in other periods. We first fix such an agent and consider markets

with 100 schools that have one spot each. We generated 5,000 markets randomly as we did in our

baseline simulation and found that there were 74 markets in which the agent could manipulate the

DA-IP mechanism. Then, to introduce incomplete information, for each of these 74 markets we

generated 5,000 new variations of these markets in which for each new variation we fix the payoffs

and priorities for the agents born in period 1 while randomly generating new payoffs and priorities

for the agents who arrive in the second period.27 Thus, we can now calculate the expected payoff

of the agent under truth telling and any other strategy. To avoid the computational complexity, we

focus on the reports that were successful manipulations in the original 74 markets instead of all the

possible preference reports. The expected payoff of the agent from the manipulation exceeded the

one from truth telling in 27 out of the 74 markets. However, the difference in the expected payoffs

was at most 0.0026 or 0.13%. In general, truth telling dominated the manipulation strategies: if we

consider all the possible 370,000 markets (74 x 5,000), the payoff difference between truth telling

and manipulation was 0.0103 on average (truth-telling was 0.55% more profitable on average). Fur-

thermore, the agent’s manipulation in the original markets did strictly better than truth telling in

only 5.80% of all the markets, while truth telling strictly dominated the manipulation in 54.41% of

the markets. This means that any manipulation of the DA-IP in one specific market in general is

not likely to succeed in other markets if the payoffs for the agents who arrive later are randomly

drawn. Although our assumption on the payoff distribution is somewhat specific, based on this

exercise we believe that the manipulation of the DA-IP in dynamic markets is not a significant

problem.

All of our simulation results suggest that the manipulability of the DA-IP mechanism becomes

negligible as the school’s capacities increase. We prove this result theoretically in the next sections.

27We generate priorities by first drawing a priority score for each agent from a uniform distribution between [0,1].
The priority ordering is simply the ordering of these priority scores. The payoffs are drawn according to the same
distribution as before (also uniform in [0,1]).
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6 School Assignment with a Continuum of Agents

This section borrows some of the notation from Azevedo and Leshno (2013) and adapts some of

their results to our dynamic environment. In this part we assume that the set of agents born in

period t, Īt = t × R × [0, 1)m+1, is a continuum mass of students. The set of children is thus

Ī = ∪∞t=0Īt = N×R× [0, 1)m+1. Let ν̄ be a measure on Ī. We assume that the distribution of the

children born in each period is identical, i.e., for any t 6= τ , J̄t ⊆ Īt and J̄τ ⊆ Īτ such that child

(t,�,x) ∈ J̄t if and only if child (τ,�,x) ∈ J̄τ , we have that ν̄(J̄t) = ν̄(J̄τ ). One can relax this

assumption without affecting the main results of the paper, but the notation will be considerably

more complicated. Let r̄ be the vector of capacities. A continuum economy is F̄ = (ν̄, r̄). For

simplicity, we assume that ν(It) = 1, for all t ≥ 0. We will maintain the following assumption

throughout the paper.

Assumption 4 (Strict Priorities). For any school s ∈ S, the measure of the agents who has the

same priority at this school is 0, i.e., ν̄ ({i : ti = t&xsi = e}) = 0 for any t ≥ 0 and e ∈ [0, 1).

The assumption above immediately implies the measure of each agent is 0, i.e., ν({i}) = 0.

We are now ready to present the definition of matching which, as in finite economies, is a

collection of period matchings. The definition of a period matching is the same one that Azevedo

and Leshno (2013) use in static continuum economies.

Definition 6 (Matching). A period-0 matching µ̄0 is a function µ̄0 : Ī0 ∪ S → Ī0 ∪ S such that

|µ̄0(i)| = 1 and |µ̄0(i)| = {h}, for all i ∈ I0, µ̄0(h) = I0 and µ̄0(s) = ∅, for all s 6= h.

A period matching in period t ≥ 1, µ̄t, is a function µ̄t : Īt ∪ Īt−1 ∪ S → Īt ∪ Īt−1 ∪ S such that

1. For all i ∈ Īt−1 ∪ Īt, |µ̄t(i)| = 1 and µ̄t(i) ⊂ S̄

2. For all s ∈ S, ν̄
(
Īt−1 ∩ µ̄t(s)

)
+ ν̄

(
Īt ∩ µ̄t(s)

)
≤ r̄s and µ̄t(s) ⊂ Īt−1 ∪ Īt

3. For all i ∈ Īt−1 ∪ Īt, i ∈ µ̄t(s) iff s = µ̄t(i).

4. Each period-t matching is right continuous, i.e., for any sequence of agents {ik} = {(τ,�, xk)}
where τ = t−1, t converging to i = (τ,�, x), we can find some large K such that µ̄t(i

k) = µ̄t(i)

for all k > K.

A matching µ̄ is a collection of period matchings: µ̄ = (µ̄0, µ̄1, · · · , µ̄t, · · · ).

Requirement 4 rules out a multiplicity of stable matchings that differ only by sets of measure

zero. As in the finite economy case, we assume that in period 0 everyone stays home. We use the

following notations: ν̄ (µ̄t(s)) ≡ ν̄
(
Īt−1 ∩ µ̄t(s)

)
+ ν̄

(
Īt ∩ µ̄t(s)

)
and µ̄(i) ≡ (µ̄ti(i), µ̄ti+1(i)).

Now that we have defined matching in continuum economies, we can define the isolated pref-

erences (P̄i(µ̄t)), priority score functions (X̄s
i (µ̄)), threshold scores (p̄s(µ̄)), and mechanism (ϕ̄) for

continuum economies as we did in finite economies. Furthermore, all the assumptions and notions
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used in finite economies such as IPA, the Danish priority system, stability, manipulability and

strategy-proofness are analogously defined for continuum economies.

The DA-IP Mechanism in Continuum Economies

The DA-IP mechanism for continuum economies associates each continuum economy with the

matching that is the result of the DA-IP algorithm, which we define below.

Fix a continuum economy F̄ . We reserve the notation η̄ for the matching which is the result of

the DA-IP algorithm. By the definition of matching, it must be that η̄0 matches each agent in Ī0

to h. Now the period-1 DA-IP matching η̄1 is found by running the following algorithm:28

Set the isolated preferences for each school-age agent i in this period to P̄i(η0). In addition, set

the priority score vector of each school s in this period to X̄s(η0).

Round 1: Each school-age agent of period 1 applies to her most preferred school according to her

isolated preferences (P̄i(η̄0) in the case of period 1). For each school s, let p̄s11 be the minimum

priority score such that the measure of the applicants to s with priority scores (X̄s
i (η̄0) that in the

case of period 1) that weakly exceed p̄s11 does not exceed the capacity of school s, r̄s. School s

rejects all the applicants whose priority score is strictly below p̄s11 and “holds” the others.

In general, at:

Round k: Each agent who was rejected in the previous round applies to her next choice school

according to her isolated preferences (P̄i(η̄0) in the case of period 1). Each school s considers the

pool of agents that consist of applicants it has been holding and the current applicants. For each

school s, let p̄sk1 be the minimum priority score such that the measure of the agents in the pool of

s with priority scores (weakly) higher than p̄sk1 does not exceed the capacity of school s, r̄s. School

s rejects those in the pool whose priority score is strictly below p̄sk1 and “holds” the others.

The algorithm terminates when no proposal is rejected and each agent is assigned her final tentative

assignment. Let p̄1 = (limk→∞ p̄
sk
1 )s∈S , which is the period-1 threshold vector associated with the

DA-IP.

In period 2, the schools’ priority scores are updated based on the period-1 DA-IP matching,

η̄1. In addition, all the school age agents in this period report their isolated preferences based on

the period-1 DA-IP matching, η̄1. Now using the algorithm described above, we find the period-2

DA-IP matching, η̄2. Let p̄1 be the threshold vector corresponding to period 1 DA-IP matching.

In each period t ≥ 2 we can run the above algorithm recursively based on the preceding period’s

DA-IP matching. Let p̄t be the threshold vector corresponding to period-t DA-IP matching. Also

let p̄ = (p̄t)
∞
t=0.

The DA-IP mechanism yields a unique matching in each economy.29

28The algorithm converges, even though it may require infinite rounds (see Azevedo and Leshno (2013)).
29This result is a straightforward adaptation of the proof by Azevedo and Leshno (2013) (Theorem 1).
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6.1 Manipulability of DA-IP in Continuum Economies

Now we consider continuum economies and show that the DA-IP mechanism is strategy-proof.

The main intuition here is that no student alone can modify, by manipulating her preferences, the

priorities in the second period. That is, the priority score vector is immune to single deviations in

an environment in which each student has measure zero.30 Then, the main source of manipulations

in dynamic matching markets (which consists in misreporting the preferences in order to change

the matching in that period, and thus changing the priority of students in the following period) is

not present in economies with a continuum of students.

Theorem 2 (Strategy-Proofness of the DA-IP). The DA-IP mechanism is strategy-proof in con-

tinuum economies.

Proof. Suppose that agent i can successfully manipulate the DA-IP mechanism in some continuum

economy F̄ . At the successful manipulation let agent i misreport her preferences as �′i 6=�i. Let the

economy which results from i’s misreporting be F̄ ′. Let η̄ and η̄′ be the DA-IP matchings in F̄ and

F̄ ′, respectively. Let the threshold scores corresponding to the η̄ and η̄′ be p̄ and p̄′, respectively.

Since the two economies differ in only agent i’s preferences and given that the measure of each

agent is 0, we have that

p̄ = p̄′.

Because i can manipulate the DA-IP mechanism at F̄ , in a similar way to Lemma 1, we obtain

that

(η̄′ti+1(i), η̄′ti+1(i)) �i (η̄ti+1(i), η̄ti+1(i)) �i (η̄ti(i), η̄ti(i)) �i (η̄′ti(i), η̄
′
ti(i)).

Set s ≡ η̄′ti+1(i). The relation above means that i is not matched to s in period ti at both matchings

η̄ and η̄′. Consequently, it must be that X̄s
i (η̄ti) = X̄s

i (η̄′ti) = xsi . However, i is matched to s in

period ti + 1 at η̄′ but not at η̄. Then by the definition of the DA-IP algorithm, it must be that

X̄s
i (η̄′ti) = xsi ≥ p̄′sti+1 but X̄s

i (η̄ti) = xsi < p̄sti+1. However, these two inequalities contradict that

p̄′sti+1 = p̄sti+1.

In the theorem above, we assumed that the schools’ priorities satisfy IPA. When we consider the

Danish priority scoring system, the theorem above no longer holds. The result that an agent –with

measure zero– could not affect her priority in the second period is not true anymore. An agent’s

preference report can place her at the top of the priority ranking of a school in the subsequent

period (by reporting homecare today). Informally, under the Danish scoring system, an agent can

change her standing in the schools’ priorities in the following period; if we think of priorities as a

function of students’ submitted preferences in the previous period, then, roughly speaking, these

results are related to the “continuity” (or lack thereof) of this function.

30Azevedo and Leshno (2013) note that small changes in the measure η (or in the capacity of each school) can
affect the threshold priority score vector significantly. However, note that a zero-measure agent is not able to affect
the threshold scores through unilateral deviations.
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Theorem 3 (Manipulation under Danish Scoring System). If the priority scoring system is Danish,

then the DA-IP mechanism is manipulable even in some continuum economies.

Proof. Consider an economy in which the threshold score at some school s corresponding to the

DA-IP matching is p̄ with p̄st > 0, p̄st+1 > 0 and t ≥ 1. Consider an agent i who was born in period

t, and whose preferences satisfy the following two conditions: (i) (s, s) is the most preferred bundle,

and (ii) (h, s) �i (s′, s′′) for all s′ 6= s and s′′ 6= s. In addition, suppose that xi < min{p̄st , p̄st+1}.
Clearly, agent i does not attend s by reporting her preferences truthfully. However, if she reports s

as her first choice and h as her second choice, then she will stay home when she is one but attends

s when she is 2. This means that agent i has a profitable manipulation.

Here we note that there are some economies in which a positive mass of agents can manipulate

the DA-IP mechanism for this economy.

Finally, we present an example that aims to capture the main features of the current Boston pre-

school system.31 In Boston, some of the most demanded kindergarten seats are obtained by agents

who enrolled in prekindergarten in those schools. Thus, an agent might benefit from attending

prekindergarten even if she would otherwise be better off with another pre-school. Below is a

minimalist example that aims to capture these features, showing that the Boston prekindergarten

system is manipulable even in a continuum economy. In the example, priorities satisfy IPA.

Example 3 (Boston Pre-School System). Consider a continuum economy F . In this economy,

agents go to preschool when they are 1 and to kindergarten when they are 2. There are three schools,

{s1, s2, s3}, and each school has a finite capacity r̄. Here schools s1 and s2 are a preschool and a

school, respectively. Thus, s1 offers only preschool classes only while s2 offers kindergarten classes.

On the other hand, s3 is an integrated institution that offers both preschool and kindergarten classes.

The set of agents born in each period t is Ī and its measure is 2r̄. The priority structure satisfies

IPA. Suppose that agent born in period t, whose preferences are given by: (s1, s3) � (s3, s3) �
(s1, s2) . In this economy, the DA-IP mechanism matches the set of agents with measure r̄ who

have the highest priority at s1 to s1 at period t. The others attend s3. However, only those who

attended s3 in period t attend s3 in period t+ 1, due to IPA. Now consider the agents who attended

s1 in period t even though they have higher priority at s3 than some of those who attend s3 at period

t. Clearly, these agents have an incentive to misreport their preferences so that (s3, s3) as their top

choice. Thus, the DA-IP is manipulable even in a continuum economy.

7 Large Markets and Convergence

Consider a finite economy E = (I, r). We now define the measure for each finite economy E based

on its empirical distribution. Specifically, the measure of each agent i is ν̃({i}) = 1/|I0|. On the

other hand, let the capacities of the schools be r̃ = r/|I0|. Using this empirical distribution, we will

denote finite economies in a similar fashion to continuum economies. Specifically, let F̃ = (ν̃, r̃)

31For a recent story covering the Boston pre-school system, please see Ebbert (2011).
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denote the finite economy E. With this notation we can define the convergence of finite economies

to a continuum economy.

Definition 7. A sequence of finite economies Ek converges to a continuum economy F̄ if the

sequence of economies F̃ k = (ν̃k, r̃k) corresponding to Ek satisfies the following two conditions:

1. ν̃k converges to ν̄ in weak* topology

2. r̃k converges to r̄ in supremum norm.

Here observe that if Ek converges to F̄ , then the ratio of the size of agents born in any period

t to the size of the agents born in t− 1 converges to 1.

In this section, we assume the following assumption in order to ensure the convergence of the

stable matchings when the finite economies converge to a continuum economy.

Assumption 5 (Market Thickness). Consider any continuum economy F̄ . Then for any t ≥ 0,

any isolated preferences P̄ ∈ P̄ and any x� x′ � 1,

ν̄({i : ti = t& P̄i = P̄ &x ≤ xi ≤ x′}) > 0.

The assumption above means that the market is thick in the sense that the type space is

sufficiently rich. This assumption guarantees the uniqueness of stable matchings in continuum

economies.

We now consider what happens to the DA-IP matchings when the sequence of economies con-

verges to a continuum economy. To study this we first define the distance between two DA-IP

matchings as defined in Azevedo and Leshno (2013). Let η and η̄ be the DA-IP matchings of a

continuum economy F and of a finite economy E. The period t distance between η̄ and η are as

follows:

dt(η, η̄) =‖ pt − p̄t ‖∞ .

Let d(η, η̄) = (dt(η, η̄))∞t=0.

Now that the distance between two DA-IP matchings defined, we can consider the convergence

of the DA-IP matchings when the sequence of finite economies converges to a continuum economy.

Definition 8. A sequence of DA-IP matchings, {ηk}, in economies {Ek} converges to η̄ if

lim
k→∞

dt(η
k, η̄) = 0 for all t ≥ 1.

Now we are ready to present the convergence result of the DA-IP matchings as the sequence of

finite economies converges to a continuum economy.

Proposition 2. If a sequence of finite economies Ek converges to a continuum economy F̄ , then

the sequence of DA-IP matchings {ηk} converges to η̄.
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Proof. See Appendix C.

We are now finally ready to study how the incentives to manipulate the DA-IP mechanism

change as the market size grows. For a finite economy E, let us define Lt as the set of the agents

born in period t who benefits by manipulating the DA-IP mechanism in this economy. In the

following theorem, we show that as finite economies converge to a continuum economy, the fraction

of the agents who can manipulate in finite economies converges to 0.

Theorem 4. If a sequence of finite economies, {Ek}, converges to a continuum economy F̄ , then{
|Lk

t |
|Ikt |

}
→ 0 for each t ≥ 1.

Proof. See Appendix C.

The main idea of the theorem above is the following: in Lemma 1 we showed that to successfully

manipulate the DA-IP mechanism an agent must weakly get worse at her first period and get

better in her second period. In other words, by manipulating this agent must be able to lower

the threshold score corresponding to the DA-IP mechanism in her second period. However, as the

economy grows this agent becomes a tiny part of the economy, and at some point her manipulation

will have minuscule impact on the threshold scores because these are converging to a fixed value,

due to Proposition 2. Thus, if an agent can manipulate the DA-IP mechanism in a large economy

then her priority score at the school she manages to attain as a result of the manipulation must be

very close the threshold score of this school.

Remark 1. Recall that we assumed that in period 0 every agent stays home. This assumption can

be relaxed, but one extra minor assumption must be made not to affect our convergence results. As

we already mentioned in Footnote 2.1 we take µ0 and µ̄0 as the primitives of our model. To preserve

our main results, we need to assume that the sequence of period-0 matchings in finite economies,

{µk0}, converges to µ̄0 as Ek converges to F̄ .

Remark 2. The market thickness assumption (Assumption 5) can be weakened significantly in

Theorem 4. Specifically, once the DA-IP matching is fixed we can define a static continuum economy

in each period in which the school age children in that period participate and their preferences are

determined by their isolated preferences.32 If each such economy has a unique stable (in the static

sense) then the main result of this paper is still valid. Azevedo and Leshno (2013) show that a wide

range of static economies has a unique stable matching. In this sense, the approximate strategy-

proofness of the DA-IP matching is valid in a vast array of economies.

Remark 3. Theorem 4 is not valid if one disposes of the market thickness assumption and if the

economy violates the condition discussed in the previous remark. We show this point in Appendix C

by presenting an example in which the fraction of agents who can manipulate the DA-IP mechanism

does not converge to 0 as a sequence of finite economies converge to such a continuum economy.

32See Appendix C for more information.
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As a last remark, we note that a version of theorem 3, which states that the DA-IP mechanism

is manipulable even in continuum economies when priorities are Danish, also holds for large, finite

markets. In other words, if the priority scoring system is Danish, then the DA-IP is manipulable

even as the market becomes large.

8 Conclusion

In this paper we have studied the strategic incentives in the DA mechanism in dynamic matching

markets. The DA mechanism is manipulable in a dynamic school choice model, and here we

analyzed how manipulable it is in a dynamic large market. We showed that under a suitable

restriction on the schools’ priorities, there is a large market relief. Specifically, we proved that if

each school’s priority is affected by the previous period’s matching only through previously enrolled

agents, then the period-by-period DA mechanism is approximately strategy-proof when the schools’

capacities as well as the number of participating agents is large. We also show that this restriction

is tight, that is, without it, the mechanism remains manipulable even in large markets.

Further, we constructed an algorithm that checks each possible deviation for the agent in a

dynamic market. The fact that the DA fails nonbossyness, implies that there is a significant com-

putational complexity in checking each possible deviation. Thus, we constructed our own algorithm

to overcome this complexity. With this algorithm, which might be of independent interest, we have

done simulations based on randomly generated data to have a better assessment of how large a

market must be in order for us to consider that the market is almost-strategy-proof. Our numbers

are rather encouraging: for markets with 100 schools, this percentage is below 2% when each school

is endowed with a unit capacity and drops to 0.04% when the capacity is twenty students per school.

This capacity number is small compared to the actual capacities of the schools in practice.

Many important matching markets are dynamic, so our results provide a guidance on how to

organize some of these markets in practice. Some of the most notorious examples are the assignment

of teachers to public schools, young children to public day care centers, and perhaps one can apply

our framework to one of the most important current international issues: the allocation of refugees

across and within different countries.33 Despite the wide range of important applications, the

dynamic centralized matching literature is still rather small, specially if compared to the literature

on static matching, including the well-known school-choice literature. Most of the results in this

dynamic matching literature have been negative, including our own impossibility result (Kennes

et al. (2014)). Our current paper shows that for large markets, strategy-proofness is not a problem

in practice.

An important issue to highlight is that the school-choice problem, for which the DA has been

the most used mechanism in practice, has generally been treated as a static problem. The previous

33Alvin Roth writes: “Refugee relocation is what economists call a matching problem, in the sense that different
refugees will thrive differently in different countries. Determining who should go where, and not just how many go to
each country, should be a major goal of relocation policy.” (Can be found at http://www.politico.eu/article/migrants-
arent-widgets-europe-eu-migrant-refugee-crisis/)
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papers on dynamic centralized matching proved negative results regarding stability and strategy-

proofness, which served as a warning on the applicability of the DA whenever there is significant

mobility of students across schools. What we show in our paper, is that even in such cases of high

student mobility, strategy-proofness is not a problem provided that the market is large, which is

a natural feature of most school choice problems. Thus, our results justify the implementation of

the DA mechanism on a period-by-period basis in dynamic markets, and provide further support

for its wide use in practice.

Finally, our theoretical results might also be a step towards solving an important open question

in the matching literature: is it possible to have a characterization result showing which mechanisms

provide a large market relief?
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Atila Abdulkadiroğlu, Parag A. Pathak, and Alvin E. Roth. Strategy-proofness versus efficiency

in matching with indifferences: Redesigning the NYC high school match. American Economic

Review, 99(5), 2009.
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Appendix A: Static Stability in Small Economies

To prove Proposition 2 we need some new definitions and results which we include in Appendices

A and B. The proof of Proposition 2 is in Appendix C.

33



Fix a finite economy E = (I, r) and a period t− 1 matching µt−1 of this economy. Now let us

construct a new period-t finite economy Et(µt−1) based on our original economy and µt−1. In this

new economy the set of agents is It∪It−1 and each agent i is defined by a pair (Pi(µt−1), Xi(µt−1)).

Observe that no two agents i and j in this static period-t economy Et(µt−1) can have the same

priority score which is less than 1, i.e., it cannot be that Xs
i (µt−1) = Xs

j (µt−1) < 1 for any s.

Definition 9 (Static Stability). We say that school-agent pair (s, i) blocks a period t matching µt

in economy Et(µt−1) if there exists a school-agent pair (s, i) such that

1. sPi(µt−1)µt(i),

2. |µt(s)| < rs or/and Xs
i (µt−1) > Xs

j (µt−1) for some j ∈ µt(s).

A matching µt is statically stable in economy E(µt−1) if no school-agent pair blocks µt.

From Gale and Shapley (1962) each period t ≥ 0 DA-IP matching ηt is statically stable in

economy Et(ηt−1).

We state the following lemma which is needed later in Appendix D.

Lemma 4. Consider two static economies in period t, Et and E′t, which are identical except that

the set of schools preferred to some school s for some agent i in economy Et is a subset of the one

in economy E′t. Let µ′t be a statically stable matching in E′t. If µ′t(i) = s, then µ′t is a statically

stable matching in Et.

Proof. Recall that every agent has the same priority score in the two economies. In addition, each

agent j 6= i has the same isolated preferences in the two economies. By combining these with the

fact that µ′t is stable in economy E′, we obtain that no school s′ and agent j 6= i can block µ′t

in economy Et. Suppose that i and some school s′ blocks µ′t in economy Et. Then i must have

a higher priority at s′ in Et. Then, by the conditions given in the lemma, i must have a higher

priority at s′ in E′t. Therefore, i and s′ should have been able to block µ′t in E′t, which contradicts

that µ′t is stable in E′t. Thus, i cannot be a part of a blocking pair.

Appendix B: Static Stability in Continuum Economies

Let us fix an economy (ν̄, r̄) satisfying Assumption 5. Fix any period t ≥ 0 and a period t − 1

matching µ̄t−1. Now let us construct a new period t continuum economy F̄t(µt−1) = (ν̄t, r̄) based

on our original economy and µ̄t−1. In this new economy the set of agents is Īt ∪ Īt−1 and each

agent i is defined by a pair (P̄i(µ̄t−1), X̄i(µ̄t−1)). With the new notations, Īt ∪ Īt−1 is distributed

on P̄ × [0, 1]n according to a measure ν̄t where

ν̄t
(
{i ∈ Īt−1 ∪ Īt : x ≤ X̄i(µ̄t−1) ≤ x′}

)
= ν̄

(
{i ∈ It−1 : x ≤ X̄i(µ̄t−1) ≤ x′}

)
+ ν̄

(
{i ∈ It : x ≤ X̄i(µ̄t−1) ≤ x′}

)
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for all x, x′ ∈ [0, 1]n where x� x′.

Let P̄ be the all possible rankings of S. Now observe that ν̄t has a full support because by

Assumption 5 it must be that

ν̄
(
{i ∈ It : P̄ = P̄ (µt−1) &x ≤ X̄i(µ̄t−1) ≤ x′}

)
> 0

for all P̄ ∈ P and x, x′ ∈ [0, 1]n where x � x′. In addition, ν̄t({i ∈ Ît : Xs
i (µ̄t−1) = x}) = 0 for all

x < 1 and s ∈ S.

Definition 10. Period t matching µ̄t is statically stable in economy F̄t(µ̄t−1) if there exists no

school-agent pair (s, i) such that

1. sP̄i(µ̄t−1)µ̄t(i),

2. ν̂(µt(s)) < r̄s or/and X̄s
i (µ̄t−1) > X̄s

j (µ̄t−1) for some j ∈ µ̄t(s)

Lemma 5. For any economy F̄t(µ̄t−1), there exists a unique statically stable matching.

Proof. We have already pointed out that ν̄t has a full support and ν̄t({i ∈ Īt−1 ∪ Īt : X̄s
i (µ̄t−1) =

x}) = 0 for all x < 1 and s ∈ S. Therefore, all the requirements for Theorem 1 of Azevedo and

Leshno (2013) are satisfied, hence F̄t(µ̄t−1) has a unique statically stable matching.

Lemma 6. For any economy F̄t(η̄t−1), η̄t is a unique statically stable matching.

Proof. This is a direct consequence of Lemma 6 and Proposition A1 of Azevedo and Leshno (2013).

Appendix C: Proofs

Proof of Lemma 1. First, let us show that any agent born in period 0 cannot manipulate the DA-IP

mechanism. To see this, recall that these agents’ matching in period 0 is exogenously determined

and to determine the period-1 matchings, the DA-IP mechanism uses the isolated preferences. In

addition, because the DA mechanism is strategy proof in static settings, by misreporting no agent

born in period 0 improves in terms of her isolated preferences.

To prove Relation 3 in (1) observe that the DA-IP – a strategy-proof mechanism in static

settings – yields ηti(i) under truth telling and η̂ti(i) under the manipulation. Consequently,

ηti(i)Pi(ηti−1)η̂ti(i), which is Relation 3.

Agent i has the highest priority at school ηti(i) in period ti+1. Thus, the definitions of isolated

preferences and DA-IP yield that

η(i) �i (ηti(i), ηti(i)). (2)

The relation above and Assumption 1 yield Relation 2 in (1).
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Now we show relation 1. On contrary suppose (ηti+1(i), ηti+1(i)) �i (η̂ti+1(i), η̂ti+1(i)). First

observe that η̂ti+1(i) 6= η̂ti(i). Otherwise, relation 3 and (2) yield that η(i) �i η̂(i) which is a

contradiction. Because η̂ti+1(i) 6= η̂ti(i), Assumption 1 and relation 3 yield that

(ηti(i), η̂ti+1(i)) �i η̂(i). (3)

Now observe that η̂ti+1(i) 6= ηti(i). Otherwise, (3) gives that (ηti(i), ηti(i)) �i η̂(i). This and (2)

give that η(i) �i η̂(i), which is a contradiction. Because ηti(i) 6= η̂ti+1(i), the supposition and

Assumption 1 give

η(i) �i (ηti(i), η̂ti+1(i)).

This and (3) yield that η̂ti+1(i) = ηti+1(i). Then the fact that η̂ti+1(i) 6= η̂ti(i), Relation 3 and

Assumption 1 yield that η(i) � η̂(i) which is a contradiction.

Proof of Proposition 2. Take any sequence of DA matchings {ηk} and the corresponding sequence

of threshold scores {pk}. For this proof we will use an induction argument. Assume that for all

τ = 0, · · · , t − 1, pkτ →k→∞ p̄τ . At t = 1, this is definitely true because pk0 = 0 and p̄0 = 0. Now

we show pkt →k→∞ p̄t.

As in Appendices A and B, we construct period-t economies {Ekt (ηkt−1)} and F̄t(η̄t−1). Now

based on Ekt (ηkt−1) let us define economy F̃ kt (ηkt−1) = (ν̃, r̃) where the measure ν̃ is a measure

satisfying ν̃({i}) = 1/|Ik0 |, and r̃ = r/|Ik0 |. Because ηkt−1 →k→∞ η̄t−1, any sequence {pkt−1} converges

to p̄t−1. Consequently, the sequence of measures ν̃kt must converge to ν̄t in the weak* sense. Then

Theorems 2(ii) and 2(iii) of Azevedo and Leshno (2013) give that pkt → p̄t. This completes the

proof.

Proof of Theorem 4. Suppose that agent i in finite economy E can manipulate the DA-IP mecha-

nism. Let agent i’s DA-IP matchings in economy E and at the successful manipulation be η(i) and

η̂(i), respectively. Let p and p̂ be the threshold scores corresponding to η and η̂, respectively.

Lemma 1 implies that agent i is not matched to s ≡ η̂ti+1(i) in period ti at both matchings η̂

and η. Thus, Xs
i (ηt−1) = Xs

i (η̂t−1) = xsi . Then because i is matched to s at period ti + 1 under η̂

but not under η, it must be that

p̂sti+1 ≤ xsi < psti+1.

In other words, if an agent i can manipulate the DA-IP mechanism then there must exist a

school s ∈ S such that the inequality above is satisfied. Therefore, to prove the theorem it suffices

to show that at each t ≥ 1, s and ε > 0, there exists large enough k̄ such that for all k ≥ k̄, there

exists no agent with ti = t− 1, |xsi − p̄st | ≥ ε and p̂skt ≤ xsi < pskt .

Suppose that the statement above is false. This means that for some t ≥ 1, s, ε > 0 and any k̄,

there exists k ≥ k̄ and i with ti = t− 1, |xsi − p̄st | ≥ ε and p̂skt ≤ xsi < pskt . In other words, we can

choose a subsequence of economies Ekj , such that in each economy in this sequence, there exists

agent ikj who is born in period t−1, |xs
ikj
− p̄st | ≥ ε and p̂

skj
t ≤ xs

ikj
< p

skj
t . Clearly, {Ekj} converges

to F̄ in weak* sense. This means that p
skj
t must converge to p̄st . Now consider the sequence of finite
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economies Êkj which differs from Ekj only in that the preferences of agent ikj is the same as the

the preferences reported at the successful manipulation. Because in each of these economies only

one agent’s preferences are changed, Êkj converges to F̄ in weak* sense. This means that {p̂skjt }
must converge to p̄st . Recall that we already showed that p

skj
t converges to p̄st . This means that as

kj increases, xs
ikj

must be arbitrarily close to p̄st because p̂
skj
t ≤ xs

ikj
< p

skj
t . Therefore, for a high

enough kj it cannot be |xs
ikj
− p̄st | ≥ ε which is a contradiction.

This completes the proof as ν̄ ({i : ti = t&xsi = e}) = 0 for any t and e ∈ [0, 1).

One can relax Assumption 5 in Theorem 4. For instance, Assumption 5 can be replaced in

Theorem 4 by the following condition: for all t ≥ 1, η̄t is a unique statically stable matching in a

static economy F̄t(η̄t−1). Observe here that this new condition is much weaker than requiring that

economy F̄ has a unique stable matching.

Finally, we now show that if η̄t is not a unique statically stable matching in a static economy

F̄t(η̄t−1) for some t ≥ 1 then the fraction of agents who can manipulate the DA-IP mechanism

does not necessarily converge to 0. In this example, we relax some of the assumptions we used in

the paper to simplify the presentation. Specifically, we will not assume that the agents born in

each period are distributed identically in the continuum economy F̄ = (ν̄, r̄) to which the sequence

of finite economies converges. In addition, the measure of the agents born in each period is not

necessarily 1. Finally, of course in one of the periods the DA-IP matching of that period will not

be a unique statically stable matching.

Example 4. There are 4 schools, s1, s2, s3 and s4. Consider the following continuum economy

F̄ = (ν̄, r̄) such that r̄s1 = r̄s2 = r̄s3 = r̄s4 = 0.25, ν̄(Ī0) = 0, ν̄(Ī1) = 0.5, ν̄(Ī2) = 0.75, ν̄(Ī3) = 0.25

and ν(Īt) = 0, for all t > 3. We assume that each agent’s preference satisfies strong rankability.

In addition, Ī1 is partitioned into Ī1
1 and Ī2

1 where ν(Ī1
1 ) = ν(Ī2

2 ) = 0.25. Furthermore, Ī2 is

partitioned into Ī1
2 , Ī2

2 and Ī3
2 where ν(Ī1

2 ) = ν(Ī2
2 ) = ν(Ī3

2 ) = 0.25. The preference rankings of the

agents satisfies the following conditions:

i ∈ Ī1
1 :(s1, s1)

i ∈ Ī2
1 :(s2, s2)

i ∈ Ī1
2 :(s1, s1) �i (h, h) �i (s4, s4)

i ∈ Ī2
2 :(s4, s4) �i (s2, s2) �i (s3, s3)

i ∈ Ī3
2 :(s3, s3) �i (s2, s2) �i (s4, s4)

i ∈ Ī3 :(s4, s4) �i (s1, s1).
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The priority scores are distributed continuously as follows:

i ∈ Ī1
2 :xs4i ∈ [0.75, 0.85) & xs1i ∈ [0.5, 0.75)

i ∈ Ī2
2 :xs3i ∈ [0.75, 1) & xs4i ∈ [0.5, 0.75)

i ∈ Ī3
2 :xs4i ∈ [0.85, 1) & xs3i ∈ [0.5, 0.75)

i ∈ Ī3 :xs4i ∈ [0.85, 1) & xs1i ∈ [0.75, 1)

For this economy, the DA-IP matching, η̄, is given in the following table.

Period 1 Period 2 Period 3

s1 Ī1
1 Ī1

1 Ī3

s2 Ī2
1 Ī2

1 ∅
s3 ∅ Ī3

2 Ī3
2

s4 ∅ Ī2
2 Ī2

2

h ∅ Ī1
2 Ī1

2

Consider now the following matching µ̄:

Period 1 Period 2 Period 3

s1 Ī1
1 Ī1

1 Ī1
2

s2 Ī2
1 Ī2

1 I2
2

s3 ∅ Ī2
2 Ī3

2

s4 ∅ Ī3
2 Ī3

h ∅ Ī1
2 ∅

Clearly, each agent in Ī1
2 prefers µ̄ to the DA-IP matching η. We will show below that there

exists a sequence of finite economies that converges to the continuum economy F̄ and such that there

is a suitable profitable manipulation for any agent in Ī1
1 . Note that market thickness is violated in

the example and also that µ̄t is statically stable matching in economy F̄ (µ̄t−1) for all t = 1, 2, 3 and,

thus, there are multiple statically stable matching in economy F̄ (µ̄1) = F̄ (η̄1).

Now we construct a sequence of economies {Ek} that converges to F̄ . For each given k =

1, · · · ,∞, economy Ek is as follows: rks1 = rks2 = rks3 = rks4 = k. In addition, |Ik0 | = 0,

|Ik1 | = 2k, |Ik2 | = 3k, |Ik3 | = k and |Ikt | = 0, for all t > 3. We assume that each agent’s preference

satisfies strong rankability. In addition, Ik1 is partitioned into Ik1
1 and Ik2

1 where |Ik1
1 | = |Ik2

1 | = k.

Furthermore, Ik2 is partitioned into Īk1
2 , Ik2

2 and Ik3
2 where |Ik1

2 | = |Ik2
2 | = |Ik3

2 | = k. The preference

rankings of the agents mirror those in the continuum economy F̄ specified above. We set r̃ks1 =

r̃ks2 = r̃ks3 = r̃ks4 = 0.25 = k/4k and ṽ({i}) = 1/4k. Furthermore, we set the priority scores so

that (1) no two agents have the same priority score (2) the range of the agents’ priority scores are

the same as in continuum economy F̄ , and (3) ν̃k converges to ν̄ in weak* topology. With these

assumptions, Ek converges to F̄ .

Observe here that the DA-IP matching in economy Ek mirrors the one in the continuum economy

38



F̄ . However, suppose that an agent in i∗ ∈ Ik1
2 reports a strongly rankable preference that satisfies

(s1, s1) �i∗ (s4, s4) �i∗ (h, h).

In this case, the DA-IP matching is as follows: As a result of this manipulation, i∗ definitely

Period 1 Period 2 Period 3

s1 Ik1
1 Ik1

1 Ik1
2

s2 Ik2
1 Ik2

1 Ik2
2

s3 ∅ I2
2 I3

2

s4 ∅ I3
2 I3

h ∅ I1
2 ∅

improves. Therefore, no matter how high k is, all the agents in Ik1
2 can manipulate the DA-

IP mechanism. Clearly, the percentage of the children who have a manipulation of the DA-IP

mechanism stays constant for each k.

Example 4 has a very specific structure in the sense that in period 2 only one agent’s false

preference report leads to a matching that is significantly different from the DA-IP matching under

truth telling. In other words, if the market is very big this false report leads to a very long chain

of rejections and proposals in the DA algorithm. Indeed, in any randomly generated economy, we

suspect that one agent’s report having such a big impact is very unlikely. In this sense Examples

similar to 4 is unlikely to occur in reality.

Appendix D:

In this Appendix we present the full version of our algorithm that checks whether an agent can

manipulate the DA-IP mechanism. We also extend some of the theoretical results discussed in

Section 5. Recall that we are working with a fixed economy E and an agent i who is one year

old in period t ≥ 1. We are investigating whether i can manipulate the DA-IP at economy E. To

simplify the presentation we do not mention economy E or that agent i is born period t in any of

the results that follow. All the agents other than i report their isolated preferences truthfully (as

given in economy E).

Lemma 7. Suppose that agent i has a successful manipulation of the DA-IP mechanism. Let η

and η̂ be the DA-IP matchings at truth telling and at the successful manipulation of i, respectively.

In addition, suppose that P̂i(η̂t−1) (≡ P̂i(ηt−1)) and P̂i(η̂t) are the respective reported isolated pref-

erences of i in periods t and t+ 1 at this manipulation.

(i) If P̂ (η̂t) 6= P (η̂t), then reporting P̂ (η̂t−1) in period t and P (η̂t) in period t + 1 is also a

successful manipulation for agent i.

(ii) It must be that ηt 6= η̂t, and P (ηt) 6= P (η̂t).
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Proof. (i) Let η̃ be the DA-IP matching if i reports P̂i(η̂t−1) in period t and P (η̂t) in period t+ 1

while all the other agents report their isolated preferences truthfully. Now using the strategy

proofness of the DA mechanism in static settings, we obtain that

η̃t+1(i)Ri(η̂t)η̂t+1(i).

Thus, by the definition of the isolated preferences,

(η̂t(i), η̃t+1(i)) �i (η̂t(i), η̂t+1(i)).

Given that η̃t = η̂t, the result above implies the desired result.

(ii) On the contrary, suppose that ηt = η̂t. By (i) of this lemma, reporting P̂i(η̂t−1) in period t

and Pi(η̂t) in period t+ 1 is an also a profitable manipulation for agent i. Because ηt = η̂t, it must

be that Pi(η̂t) = Pi(ηt). Thus, at the new profitable manipulation, i obtains η(i) but this is what i

obtains under truth-telling. Thus, we have reached a desired contradiction. The other part of (ii)

follows immediately from the first part, because ηt 6= η̂t only if P (ηt) 6= P (η̂t).

This lemma simplifies significantly our task of identifying the possible manipulations: any agent

who is contemplating to manipulate the DA-IP mechanism should consider changing her isolated-

preference report when she is age one while submitting her true isolated-preference report when

she is age two. This means that if there are m schools, then we need to check at most m! possible

isolated-preference reports in order to figure out if an agent has a successful manipulation. This still

is a daunting task, but the second part of the lemma offers a way to simplify our task further: we

need to find all the period-t DA-IP matchings that correspond to some period-t isolated-preference

report of i. As a first step in this direction, first we identify the schools that i can get matched in

period t by submitting some isolated preference reports.

For the remainder of the current appendix we will only concentrate on period t. Thus, unless

otherwise stated, we discuss only period-t DA-IP mechanism and period-t isolated-preference re-

ports of the agents with respect to the previous period’s DA-IP matching ηt−1. Thus, we simplify

the notations by writing Pi instead of Pi(ηt−1).

We now prove Lemma 2 studied in the main text of the paper.

Proof of Lemma 2. To prove this lemma it suffices to show that the DA-IP mechanism allocates

agent i to the attainable school listed highest in the submitted isolated-preference report of agent

i. Let P ∗i be the submitted isolated-preference report of agent i. Let s∗ be the highest ranked

attainable school in i’s report. Contrary to the claim, suppose that i is not allocated to s∗. Clearly,

by the definition of the non-attainable schools, i cannot be allocated to any non-attainable school.

Thus, i must be allocated to an attainable school that is listed after s∗. However, because s∗ is

a attainable school the DA-IP must allocate i to s∗ for some report of i∗. As a result, if i’s true

preferences were P ∗i , she would have had a successful manipulation of the DA-IP mechanism. This

40



contradicts the strategy-proofness of the DA mechanism in static settings.

We now diverge somewhat from the material in Section 5 where for simplicity of presentation, we

introduced a simpler version of our algorithm. By definition, i can get allocated to any attainable

school by submitting an appropriate isolated-preference report. However, there are some attainable

schools that regardless of what school i is matched in period t+1 are inferior to i’s DA-IP matching

under truth telling, η(i). Any period-t matching under which i is allocated to such a attainable

school therefore can be ignored for our purposes of finding out whether i can manipulate the DA-IP

mechanism.

Definition 11. A school s is relevant if it is attainable and

(s, s∗) �i η(i)

where s∗ is the school such that (s∗, s∗) �i (s′, s′) for all s′ 6= s∗.

We now look for ways to find all the DA-IP matchings under which i is allocated to some fixed

relevant school s.

For each relevant school s and each set Ss ⊂ SNA we split the non-attainable schools into two

groups: redundant and non-redundant. If we set Ss = ∅, then the current definition of redundant

school is equivalent to the one we used in Section 5.

Definition 12. A school s′ is redundant for (s, S′) where s is attainable and S′ ⊂ SNA if s′

is attainable and if the DA-IP mechanism produces the same matching when i submits any two

isolated-preference reports, P si and P̃ si ,

1. that rank s as their highest attainable school

2. that the sets of schools ranked higher than s under P si and P̃ si both contain Ss, and they differ

only in that the one under P si does not contain s′ while the one under P̃ si does.

A school s′ is non-redundant for (s, S′) if s′ is attainable and in addition, it is not redundant for

(s, S′). We use the notations SR(s, S′) and SNR(s, S′) to denote the redundant and non-redundant

schools for (s, S′), respectively.

Consider any S′ ⊂ SNA and S′′ ⊂ SNA such that S′ ⊆ S′′. From the definition above it is clear

that

(i) If s′ ∈ SR(s, S′), then s′ ∈ SR(s, S′′).

(ii) If s′ ∈ SNR(s, S′′), then s′ ∈ SR(s, S′).

Fix a relevant school s and a subset of the non-attainable schools Ss ⊆ SNA. We write P̂ si to

denote an isolated-preference report of i in which the set of schools ranked higher than s is Ss. We

also write µ̂st to denote the DA-IP matching when i reports P̂ si .
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Lemma 8. A school s′ is redundant for (s, Ss) where s is relevant and Ss ⊆ SNA if and only if

Xs′
i (ηt−1) < min

j∈µ̂st (s′)
{Xs′

j }(ηt−1)

Proof. (a) We first prove the if part.

Fix any isolated-preference reports, P si or P̃ si , such that

1. they rank s as their highest attainable school

2. the sets of non-attainable schools ranked higher than s under P si and P̃ si both contain Ss,

and these sets differ only in that one under P si does not contain s′ while the one under P̃ si
does.

We need to prove that the DA-IP mechanism produces the same matching if i submits either P si
or P̃ si .

Let µst and µ̃st be the period-t DA-IP matchings corresponding when i submits P si and P̃ si .

By Lemma 2, µ̂st (i) = µst (i) = µ̃st (i). Now we define three static economies, Êt, Et, and Ẽt, in

which the set of agents in the three economies is the school-age agents in period t and the preference

of each agent j 6= i is Pj ≡ Pj(ηt−1). However, i’s preference is P̂ si , P si , and P̃ si in economies Êt,

Et, and Ẽt, respectively.

Clearly, µst , µ̂
s
t and µ̃st are agent-optimal or school-worst stable matchings in economies Et, Êt,

and Ẽt, respectively.

By Lemma 4, µst is stable in Êt. Because µ̂st is the school-worst stable matching in economy Êt

and µst , we obtain that

min
j∈µ̂st (s′)

{Xs′
j }(ηt−1) ≥ min

j∈µst (s′)
{Xs′

j }(ηt−1).

Combining condition above with the condition given in the lemma, we get

Xs′
j < min

j∈µst (s′)
{Xs′

j (ηt−1)}. (4)

By Lemma 4, µ̃st is stable in Et. Because µst is the agents-optimal stable matching in economy

Et, every school-age agent j weakly prefers µst to µ̃st in terms of her isolated preferences. If we

show the opposite, i.e., every school-age agent j weakly prefers µ̃st to µst in terms of her isolated

preferences, then we are done. Thus, it suffices to show that µst is stable in economy Ẽt because

matching µ̃st is the agent-optimal (static) stable matching in economy Ẽt. Suppose that µst is not

stable in economy Ẽt. Given that the schools’ priorities and each agent j 6= i’s preferences are the

same in the two static economies, no agent j 6= i and any school s̃ can block µst in economy Ẽt

because µst is stable in economy Et. Therefore, there must exist s̃ such that i and s̃ block µst in

economy Ẽt. Now recall that i is matched to s under both µst and µ̃st . Thus, to be a part of a

blocking pair, s̃ must be ranked higher than s in P̃ si . By the conditions given the lemma, if s̃ 6= s′

then it is also ranked higher than s in P si . Then, i and s′ should have blocked µst in Et, which
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contradicts that µst is stable in Et. Thus, s̃ = s′. However, due to (4), i and s′ cannot block µst in

economy Ẽt. Consequently, µst is stable in economy Ẽt.

(b) We now prove the only if part. Suppose that

Xs′
i (ηt−1) > min

j∈µ̂st (s′)
{Xs′

j }(ηt−1).

We show s′ is non-redundant for (s, Ss). On the contrary suppose that s′ is redundant for (s, Ss).

Consider i’s isolated-preference report, P̃ si , in which the set of schools listed ahead of s is Ss ∪ s′.
We would reach a contradiction if we show that the DA-IP does not produce µ̂st when i reports

P̃ si . Let Ẽt be a static economy in which the set of the agents is the school-age agents in period

t, the preference of each agent j 6= i is Pj ≡ Pj(ηt−1) and i’s preference is P̃ si . Given that the

DA-IP produces a stable matching in Ẽt, all we need to show is that µ̂st is not static stable in

Ẽt. This is clear because now i and s′ will block µ̂st because i ranks s′ ahead s and Xs′
i (ηt−1) >

minj∈µ̂st (s′){Xs′
j }(ηt−1).

Now we are ready to present our algorithm to find all the period-t DA-IP matchings under

which i is allocated to a relevant school.

The Algorithm to Find the Set of Period-t Matchings under which i is Allocated to a Given

Relevant School

Fix a relevant school s.

Round 0. Fix an isolated-preference report of i in which s is ranked first. Find the DA-IP

matching when i submits this preference report andM0
t (s) be the set that consists of this matching.

Find all the redundant and non-redundant schools for (s, ∅). Let S0(s) be the set of all subsets of

SR(s, ∅). Call S0
1 (s) = {S′ ∈ S0(s) : |S′| = 1}.

Round 1. For each S′ ∈ S0
1 (s), fix an isolated-preference report of i in which s is the highest

ranked attainable school and in which the set of schools that are ranked higher than s is S′. For all

these fixed reports of i, find the DA-IP matchings and denote the set of these matchings byM1
t (s).

If school s′ ∈ SNA is redundant s and some S′ ∈ S0
1 (s), then we eliminate each S′′ ⊇ {S′ ∪ s′} from

S0(s). Specifically, update S0(s) to S1(s) as follows:

S1(s) = S0(s) \
{
S′′ ∈ S0(s) : S′′ ⊇ {S′ ∪ s′} for some S′ ∈ S1(s) & s′ ∈ SR(s, S′)

}
.

Set S1
2 (s) = {S′ ∈ S1(s) : |S′| = 2}.

Round k. For each S′ ∈ Sk−1
k (s), fix an isolated-preference report of i in which s is the highest

ranked attainable school and in which the set of schools that are ranked higher than s is S′. For all

these fixed reports of i, find the DA-IP matchings and denote the set of these matchings byMk
t (s).

If school s′ ∈ SNA is redundant for s and some S′ ∈ Sk(s), then we eliminate each S′′ ⊇ {S′ ∪ s′}
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from Sk−1(s). Specifically, update Sk−1(s) to Sk(s) as follows:

Sk(s) = Sk−1(s) \
{
S′′ ∈ Sk−1(s) : S′′ ⊇ {S′ ∪ s′} for some S′ ∈ Sk−1

k (s) & s′ ∈ SR(s, S′)
}
.

Set Skk+1(s) = {S′ ∈ Sk(s) : |S′| = k + 1}.
The algorithm stops at step k̄ where Sk̄+1(s) = ∅ and the set of the matching Mt(s) =

∪k̄k=0Mk
t (s).

Proposition 3. The algorithm above yields all the period-t matchings that are the result of the

DA-IP mechanism for some report of i and in which i is allocated to s.

Proof. Fix a relevant school s and period-t matching µt such that µt(i) = s. In addition, suppose

that the DA-IP mechanism produces µt when i submits an isolated-preference report, P 1
i . Contrary

to the proposition, suppose that µt is not found by our algorithm.

Let S1 be the set of schools that i listed ahead of s at P 1
i . By Lemma 4, we know that S1 ⊆ SNA.

If S1 = ∅, then we are done, because µt must be found in round 0 of our algorithm. Thus, S1 6= ∅.
Suppose that each s1 ∈ S1 is non-redundant for (s, S1 \ s1). This means that each s1 ∈ S1 is

non-redundant for (s, S′) where S′ ⊆ S1 \ s1. Consequently, each set S′ ⊆ S1 is in S |S1|−1(s) (i.e.,

the set found in round |S1| of our algorithm). Furthermore, S1 ∈ S |S
1|−1

|S1| (s). Thus, µt would have

been found in round |S1| of our algorithm, which is a contradiction. Consequently, there exists

s1 ∈ S1 such that s1 is redundant for (s, S1 \ s1).

Now fix one s1 such that s1 is redundant for (s, S1 \ s1). Set S2 = S1 \ s1. Consider i’s isolated-

preference report in which the set of schools listed ahead of s is S2. If i submits this report then

the DA-IP mechanism must produce µt, due to Lemma 8. Using similar arguments in the previous

paragraph, we get that there exists s2 ∈ S2 such that s2 redundant for (s, S2 \ s1). Using this

argument repeatedly, we find sequences {s1 · · · , s|S|} and {S1 · · · , S|S|+1} such that Sk = Sk−1 \ sk

and sk is redundant for (s, Sk−1) for all k = 1, · · · , |Sk|. Clearly, S|S
1|+1 = ∅. In addition, observe

that if i submits an isolated-preference report in which the set of schools listed ahead of s is Sk

where k = 1, · · · , |Sk|+ 1, then the DA-IP produces µt. Because S|S
1|+1 = ∅, µt must be produced

at round 0 of our algorithm.

Now we are finally ready to present our algorithm to check the manipulability of the DA-IP

mechanism in a given economy by a given agent.

Fix an economy E and an agent i. Suppose that agent i is born in period t ≥ 1.

The Algorithm to Check the Manipulability of the DA-IP Mechanism

Step 1. Run the DA-IP mechanism in economy E until period t + 1 and find the DA-IP

matching of i. If i is matched to its most preferred school (s̄, s̄) then stop the algorithm. In this

case, i cannot manipulate the DA-IP mechanism in economy E. If not move to the next step.

Step 2. Find the set of attainable schools of i in period t.
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Step 3. Find the relevant schools of i in period t. If no relevant school exists then we stop the

algorithm. In this case, i cannot manipulate the DA-IP mechanism in economy E. If a relevant

school exists, then move to the next step.

Step 4. Consider the relevant schools sequentially. For a fixed relevant school s, find the set of

period-t matchings, Mt(s), under which i is allocated to s. Consider each µt ∈Mt(s) sequentially

and find the period t + 1 DA-IP matching, µt+1, assuming that every school-age agent j reports

her period t + 1 isolated preferences as Pj(µt). If µ(i) �i η(i), then stop the algorithm. In this

case, i can manipulate the DA-IP mechanism. Otherwise, consider the next matching inMt(s). If

the algorithm does not stop before exhausting all the relevant schools and each period-t matchings

under which i is matched to a relevant school, then i cannot manipulate the DA-IP mechanism.
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